Conservation tillage rotation enhanced soil structure and soil nutrients in long-term dryland agriculture

2021 ◽  
Vol 131 ◽  
pp. 126379
Author(s):  
Yujiao Zhang ◽  
Chunjian Tan ◽  
Rui Wang ◽  
Jun Li ◽  
Xiaoli Wang
2003 ◽  
Vol 43 (4) ◽  
pp. 325 ◽  
Author(s):  
K. Y. Chan ◽  
D. P. Heenan ◽  
H. B. So

Light-textured soils (<35% clay) make up more than 80%, by area, of cropping soils in Australia. Many have inherent soil physical problems, e.g. hardsetting, sodicity and low organic carbon levels. Maintenance and improvement of soil organic carbon levels are crucial to preserving the soil structure and physical fertility of these soils.A review of field trials on conservation tillage (3–19 years duration) on these soils in southern Australia revealed that significantly higher soil organic carbon levels compared with conventional tillage were found only in the wetter areas (>500 mm) and the differences were restricted to the top 2.5–10.0 cm. The average magnitude of the difference was lower than that reported in the USA. The lack of a positive response to conservation tillage is probably a reflection of a number of factors, namely low crop yield (due to low rainfall), partial removal of stubble by grazing and the high decomposition rate (due to the high temperature). There is evidence suggesting that under continuous cropping in the drier areas, the soil organic carbon level continues to decline, even under conservation tillage.Better soil structure and soil physical properties, namely macro-porosity, aggregate stability and higher infiltration have been reported under conservation tillage when compared with conventional tillage. However, little information on long-term changes of these properties under conservation tillage is available. As many of these soil qualities are associated directly or indirectly with soil organic carbon levels, the lack of significant increase in the latter suggests that many of these improvements may not be sustainable in the longer term, particularly in the drier areas. Continuous monitoring of long-term changes in the soil organic carbon and soil quality under conservation tillage in different agro-ecological zones is needed.


Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 344 ◽  
Author(s):  
Hongwen Li ◽  
Huanwen Gao ◽  
Hongdan Wu ◽  
Wenying Li ◽  
Xiaoyan Wang ◽  
...  

An understanding of long-term tillage and straw management impact on soil structure and productivity is necessary for the further development of conservation tillage practice in dryland farming areas. Data from a 15-year field experiment conducted in Shanxi, on the loess plateau of northern China, were used to compare the long-term effects of no-till and residue cover (NTSC) with conventional tillage (CT) in a winter wheat (Triticum aestivum L.) monoculture. Long-term CT and straw removal resulted in poor soil structure and low productivity. Mean soil bulk density in NTSC was 1.5% less than in CT and capillary porosity (<60 μm) 3.2% greater. Water stability of macro-aggregates >2 mm was much greater for NTSC in the 0–0.20 m profile. Soil organic matter and total N and P were 27.9%, 25.6%, and 4.4% greater in NTSC, respectively, and earthworms (19/m2) were found only in the no tillage treatment. Crop yield and water use efficiency tended to be higher under NTSC than under CT, especially in the years of low rainfall, suggesting that the change in soil structure has provided a better environment for crop development. Our 15-year experimental data indicate that NTSC is a more sustainable farming system, which can improve soil structure, and increase productivity with positive environmental impacts in the rainfed dryland farming areas of northern China.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Chunjian Tan ◽  
Xue Cao ◽  
Shuai Yuan ◽  
Weiyu Wang ◽  
Yongzhong Feng ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


2021 ◽  
Author(s):  
Eric W. Seabloom ◽  
Elizabeth T. Borer ◽  
Sarah E. Hobbie ◽  
Andrew S. MacDougall
Keyword(s):  

2009 ◽  
Vol 105 (1) ◽  
pp. 55-62 ◽  
Author(s):  
E. Madejón ◽  
J.M. Murillo ◽  
F. Moreno ◽  
M.V. López ◽  
J.L. Arrue ◽  
...  

Soil Research ◽  
2001 ◽  
Vol 39 (2) ◽  
pp. 239 ◽  
Author(s):  
Yuxia Li ◽  
J. N. Tullberg ◽  
D. M. Freebairn

Wheel traffic can lead to compaction and degradation of soil physical properties. This study, as part of a study of controlled traffic farming, assessed the impact of compaction from wheel traffic on soil that had not been trafficked for 5 years. A tractor of 40 kN rear axle weight was used to apply traffic at varying wheelslip on a clay soil with varying residue cover to simulate effects of traffic typical of grain production operations in the northern Australian grain belt. A rainfall simulator was used to determine infiltration characteristics. Wheel traffic significantly reduced time to ponding, steady infiltration rate, and total infiltration compared with non-wheeled soil, with or without residue cover. Non-wheeled soil had 4—5 times greater steady infiltration rate than wheeled soil, irrespective of residue cover. Wheelslip greater than 10% further reduced steady infiltration rate and total infiltration compared with that measured for self-propulsion wheeling (3% wheelslip) under residue-protected conditions. Where there was no compaction from wheel traffic, residue cover had a greater effect on infiltration capacity, with steady infiltration rate increasing proportionally with residue cover (R 2 = 0.98). Residue cover, however, had much less effect on inf iltration when wheeling was imposed. These results demonstrated that the infiltration rate for the non-wheeled soil under a controlled traffic zero-till system was similar to that of virgin soil. However, when the soil was wheeled by a medium tractor wheel, infiltration rate was reduced to that of long-term cropped soil. These results suggest that wheel traffic, rather than tillage and cropping, might be the major factor governing infiltration. The exclusion of wheel traffic under a controlled traffic farming system, combined with conservation tillage, provides a way to enhance the sustainability of cropping this soil for improved infiltration, increased plant-available water, and reduced runoff-driven soil erosion.


Sign in / Sign up

Export Citation Format

Share Document