Transglycosylated stevia and hesperidin as pharmaceutical excipients: Dramatic improvement in drug dissolution and bioavailability

2010 ◽  
Vol 76 (2) ◽  
pp. 238-244 ◽  
Author(s):  
Hiromasa Uchiyama ◽  
Yuichi Tozuka ◽  
Masaaki Imono ◽  
Hirofumi Takeuchi
2021 ◽  
Vol 901 ◽  
pp. 22-27
Author(s):  
Kanokporn Burapapadh ◽  
Narumon Changsan ◽  
Chutima Sinsuebpol ◽  
Phennapha Saokham

Dictyophora indusiata known as bamboo mushroom is an edible mushroom in Genus Dictyophora, Family Phallaceae that could produce highly viscous mucilage encased in the peridium. The viscous mucilage is clear-colorless hydrocolloid with high viscosity and high adhesive nature which made it possible to be developed into pharmaceutical excipients. This research work aimed at the application of the mucilage as a tablet binder. The mucilage was prepared as redispersible powder by lyphilization before used. The dried mucilage could be effectively used as a binder in paracetamol tablet formulations both as dry and wet binder. Increasing of the dried mucilage amount caused the stronger tablet with higher disintegration time. The optimum concentrations of the dried mucilage in tablet formulations were 2.0% w/w as dry binder and 1.0% w/w as wet binder. The obtained tablets revealed low friability and fast disintegration time. The drug dissolution was conformable to USP37 standard and comparable to that of commercial product. Accordingly, the Dictyophora indusiata mucilage could be functionally used as a tablet binder


2002 ◽  
Vol 716 ◽  
Author(s):  
Alok Nandini ◽  
U. Roy ◽  
A. Mallikarjunan ◽  
A. Kumar ◽  
J. Fortin ◽  
...  

AbstractThin films of low dielectric constant (κ) materials such as Xerogel (ĸ=1.76) and SilkTM (ĸ=2.65) were implanted with argon, neon, nitrogen, carbon and helium with 2 x 1015 cm -2 and 1 x 1016 cm -2 dose at energies varying from 50 to 150 keV at room temperature. In this work we discuss the improvement of hardness as well as elasticity of low ĸ dielectric materials by ion implantation. Ultrasonic Force Microscopy (UFM) [6] and Nano indentation technique [5] have been used for qualitative and quantitative measurements respectively. The hardness increased with increasing ion energy and dose of implantation. For a given energy and dose, the hardness improvement varied with ion species. Dramatic improvement of hardness is seen for multi-dose implantation. Among all the implanted ion species (Helium, Carbon, Nitrogen, Neon and Argon), Argon implantation resulted in 5x hardness increase in Xerogel films, sacrificing only a slight increase (∼ 15%) in dielectric constant.


2017 ◽  
Vol 1 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Katherine Nolan ◽  
Reema Ishteiwy ◽  
John Alexis ◽  
Martin Zaiac ◽  
Anna Nichols

A 51-year-old female with a history of rheumatoid arthritis was admitted for progressive fevers, chills and malaise. Five weeks prior, she started minocycline for an RA exacerbation. Two weeks after starting minocycline she developed an abscess on her right ankle that was treated at an urgent care facility with ceftriaxone and trimethoprim-sulfamethoxazole. She had minimal improvement so was switched to clindamycin. She developed additional abscesses on her right ankle and right axilla and spiking fevers so she was treated with incision and drainage under general anesthesia. Routine blood work obtained prior to surgery revealed severe neutropenia (0.74 103/ul) and the patient was urgently referred to the emergency department.  Skin biopsy was obtained on admission and revealed ulceration, necrosis, acute and chronic inflammation, vasculitis with vascular thrombosis and rod-shaped bacteria in blood vessel walls and lumina consistent with ecthyma gangrenosum. The following day tissue and blood cultures confirmed the growth of Pseudomonas aureginosa. Bone-marrow biopsy showed decreased granulopoiesis and hematopoiesis, and a diagnosis of minocycline-induced agranulocytosis presenting as ecthyma gangrenosum was made.  The patient had dramatic improvement with appropriate antibiotic therapy, discontinuation of minocycline and initiation of filgrastrim. She has remained healthy without recurrence for 17 months.    


Author(s):  
Audinarayana N ◽  
Anala Srinivasulu ◽  
Vellore Sruthikumari ◽  
Likitha ◽  
Ananda Deepak V

The principle in this present research is to formulate Mesalamine containing colon targeted tablets by using different polymers and evaluate the effect of different polymers in drug release pattern. The matrix tablets of Mesalamine are formulated by polysaccharides based polymers like Cellulose acetate phthalate (CAP), Ethyl cellulose (EC), Guar gum (GG) and Xanthan gum (XG) which protects the drug to release in Stomach and Small Intestine. The invitro drug dissolution investigation of F2 (GG and XG) Matrix tablet was controlled by swelling into a viscous gel in colonic pH, which have been accomplished as the best tablet. The optimized tablet F2 was found to be stable in stability study (short term) with reproducible evaluation data, which also shows the highest swelling index, increased viscosity in colonic pH. The drug release pattern from the F2 formulation follows swelling and erosion behavior. From the data it show that F2 tablets suitable for providing colon targeted drug delivery.


Author(s):  
D. Vallett ◽  
J. Gaudestad ◽  
C. Richardson

Abstract Magnetic current imaging (MCI) using superconducting quantum interference device (SQUID) and giant-magnetoresistive (GMR) sensors is an effective method for localizing defects and current paths [1]. The spatial resolution (and sensitivity) of MCI is improved significantly when the sensor is as close as possible to the current paths and associated magnetic fields of interest. This is accomplished in part by nondestructive removal of any intervening passive layers (e.g. silicon) in the sample. This paper will present a die backside contour-milling process resulting in an edge-to-edge remaining silicon thickness (RST) of < 5 microns, followed by a backside GMR-based MCI measurement performed directly on the ultra-thin silicon surface. The dramatic improvement in resolving current paths in an ESD protect circuit is shown as is nanometer scale resolution of a current density peak due to a power supply shortcircuit defect at the edge of a flip-chip packaged die.


2012 ◽  
pp. 31-35
Author(s):  
Truong Dinh Thao Tran ◽  
Ha Lien Phuong Tran ◽  
Nghia Khanh Tran ◽  
Van Toi Vo

Purposes: Aims of this study are dissolution enhancement of a poorly water-soluble drug by nano-sized solid dispersion and investigation of machenism of drug release from the solid dispersion. A drug for osteoporosis treatment was used as the model drug in the study. Methods: melting method was used to prepare the solid dispersion. Drug dissolution rate was investigated at pH 1.2 and pH 6.8. Drug crystallinity was studied using differential scanning calorimetric and powder X-ray diffraction. In addition, droplet size and contact angle of drug were determined to elucidate mechanism of drug release. Results: Drug dissolution from the solid dispersion was significantly increased at pH 1.2 and pH 6.8 as compared to pure drug. Drug crystallinity was changed to partially amorphous. Also dissolution enhancement of drug was due to the improved wettability. The droplet size of drug was in the scale of nano-size when solid dispersion was dispersed in dissolution media. Conclusions: nano-sized solid dispersion in this research was a successful preparation to enhance bioavailability of a poorly water-soluble drug by mechanisms of crystal changes, particle size reduction and increase of wet property.


Author(s):  
V A. Vamshi Priya ◽  
G. Chandra Sekhara Rao ◽  
D. Srinivas Reddy ◽  
V. Prabhakar Reddy

The purpose of this study was to investigate the efficiency of superdisintegrants: sodium starch glycolate, croscarmellose sodium and crospovidone in promoting tablet disintegration and drug dissolution of Topiramate immediate release tablets. The efficiency of superdisintegrants was tested, by considering four concentrations, viz., like 2%, 3%, 4% and 5% in the formulations. The dissolution was carried out in USP apparatus II at 50 rpm with distilled water as a dissolution medium. The dissolution rate of the model drug topiramate was found highly dependent on the tablet disintegration, on the particle size of the superdisintegrant, on the solubility of the drug and also on the type of superdisintegrant in the dissolution medium. There was no effect of the diluent (Lactose monohydrate) on the disintegration of different concentrations of superdisintegrants. These results suggest that, as determined by the f2 metric (similarity factor), the dissolution profile of the formulation containing 4% sodium starch glycolate and lactose monohydrate as a diluent was similar to that of a marketed product.


Sign in / Sign up

Export Citation Format

Share Document