Simplified kinetic modelling and numerical simulation of a metal oxide chemical bath electro deposition process at a rotating electrode

2006 ◽  
Vol 52 (3) ◽  
pp. 1296-1308 ◽  
Author(s):  
Ph. Mandin ◽  
J.M. Cense ◽  
G. Picard ◽  
D. Lincot
2004 ◽  
Vol 822 ◽  
Author(s):  
J. Reemts ◽  
J. Parisi ◽  
A. Kittel

AbstractDye sensitized solar cells of the Graetzel type are usually fabricated with TiO2 covered with dye after its synthesis as one electrode. ZnO is, aside from TiO2, a promising alternative semiconducting material for solar energy conversion due to its enhanced surface area and a strong attachment of non-aggregated sensitizer dyes. We investigate ZnO/dye electrodes where the dye is already added during the electro-deposition process of the ZnO. We examine the influence of the dye species and the dye concentration on the surface morphology by means of atomic force and scanning electron microscopy imaging. The electrical properties of the films are characterized by means of current-voltage measurements. In order to study the integral properties of the charge carrier transport in the lateral direction of the film we characterized ZnO thin films electro-deposited across an insulating gap between two microstructured electrodes made of gold.


2014 ◽  
Vol 27 (4) ◽  
pp. 543-552
Author(s):  
Young Sik Park ◽  
Ha-Mong Shim ◽  
Myung Hwan Na ◽  
Ho-Chun Song ◽  
Sanghoo Yoon ◽  
...  

2009 ◽  
Vol 75 ◽  
pp. 1-6 ◽  
Author(s):  
Fu Chi Wang ◽  
Qun Bo Fan ◽  
Lu Wang ◽  
Quan Sheng Wang ◽  
Zhuang Ma

To develop novel and advanced thermal barrier coatings, full-scale numerical simulation of plasma-sprayed functionally gradient materials is conducted in this paper, including the prediction of basic parameters at the nozzle exit, simulation of three dimensional simulation of the plasma jet, modeling of the interaction between the plasma jet and the particles, calculation of flight trajectories and temperature history of flying metal and ceramic particles, the interaction between the molten particles and the substrate, as well as the deposition process of the coatings. Various complex phenomena, such as turbulent effects with chemical reactions in the plasma jet, dispersion status of the particles onto the substrate, and the composition distribution of the functionally gradient materials, are fully taken into account. The numerical simulation results are found to be in good agreement with experimental evidence.


MRS Advances ◽  
2018 ◽  
Vol 3 (15-16) ◽  
pp. 803-816
Author(s):  
Chunxu Pan ◽  
Jun Wu ◽  
Gongsheng Song ◽  
Chengzhi Luo ◽  
Delong Li ◽  
...  

ABSTRACTIn the past few years, our group worked on the area of transformation from the two-dimensional (2-D) nanocrystalline films to one-dimensional (1-D) nanomaterials by using thermal oxidation. In this paper, we overview the research work on the controllable growth processes, transformation phenomena, growth mechanisms and applications. In general, the preparation process includes the following steps: 1) prepare a pure metal nanocrystalline film via a pulse electro – deposition; 2) grow variant 1-D nanomaterials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and 1-D metal oxide nanoneedles involving ZnO, CuO and Fe3O4, etc. by using this film as catalyst. This process exhibits the following features: 1) the 1-D nanomaterials grow according to “base growth” model and no residual catalyst exists at the tip of the products; 2) the diameter of the 1-D nanomaterials can be controlled by controlling grain sizes of the 2-D films through adjusting pulse electro-deposition parameters; 3) it is more easily to get the 1-D nanomaterials with large area, uniform, vertical alignment and good shape on the substrates. We propose a “solid state based-up diffusion growth mechanism” for growth of the 1-D metal oxide nanoneedles, and “base growth model” for the 1-D carbon nanomaterials. The physical properties, such as Field emission and magnetics, of the 1-D metal oxide nanoneedles were studied, which showed desired values. In addition, we couple the ZnO nanoneedles with NiO, TiO2, graphene, Au nanoparticles, etc. for enhancing photocatalytic properties in the areas of environmental purification.


Sign in / Sign up

Export Citation Format

Share Document