Field investigations of stack ventilation in a residential building with multiple chimneys and tilted window in cold climate

2015 ◽  
Vol 103 ◽  
pp. 48-61 ◽  
Author(s):  
M. Krzaczek ◽  
J. Florczuk ◽  
J. Tejchman
Designs ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 42 ◽  
Author(s):  
Ebrahim Solgi ◽  
Zahra Hamedani ◽  
Shahab Sherafat ◽  
Ruwan Fernando ◽  
Farshid Aram

The continuing importance of energy conservation in the building sector has drawn major attention to energy audits of existing buildings in different climates. In this paper, the energy conservation potential of a residential building located in Iran’s cold climate was investigated through an analysis of its actual energy consumption and through computer simulation. The building base-load was determined using a linear regression method based on existing energy bills, and was used to validate the computer simulation of its energy usage. The impact of typical energy saving solutions was evaluated for three cost refurbishment scenarios: low, medium and high. The results show that the existing construction and envelope materials fail to meet the national standards of Iran, but insulating the envelope was found to be a more cost-effective measure than modifying the windows. The results also demonstrate that although the use of energy-saving solutions has a significant impact on energy consumption, even the most economic solutions investigated will have a payback period longer than one decade. Thus, with current energy prices the reviewed energy conservation strategies are not economically justified in Iran from the consumer perspective, as investment in the methods considered typical in other parts of the world will not show a return for at least a half-century.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2436 ◽  
Author(s):  
Julià Coma ◽  
José Miguel Maldonado ◽  
Alvaro de Gracia ◽  
Toni Gimbernat ◽  
Teresa Botargues ◽  
...  

The building sector accounts for one third of the global energy consumption and it is expected to grow in the next decades. This evidence leads researchers, engineers and architects to develop innovative technologies based on renewable energies and to enhance the thermal performance of building envelopes. In this context, the potential applicability and further energy performance analysis of these technologies when implemented into different building typologies and climate conditions are not easily comparable. Although massive information is available in data sources, the lack of standardized methods for data gathering and the non-public availability makes the comparative analyses more difficult. These facts limit the benchmarking of different building energy demand parameters such as space heating, cooling, air conditioning, domestic hot water, lighting and electric appliances. Therefore, the first objective of this study consists in providing a review about the common typologies of residential buildings in Europe from the main data sources. This study contains specific details on their architecture, building envelope, floor space and insulation properties. The second objective consists in performing a cross-country comparison in terms of energy demand for the applications with higher energy requirements in the residential building sector (heating and domestic hot water), as well as their related CO2 emissions. The approach of this comparative analysis is based on the residential building typology developed in TABULA/EPISCOPE projects. This comparative study provides a reference scenario in terms of energy demand and CO2 emissions for residential buildings and allows to evaluate the potential implementation of new supply energy technologies in hot, temperate and cold climate regions. From this study it was also concluded that there is a necessity of a free access database which could gather and classify reliable energy data in buildings.


Author(s):  
Regina Dias Ferreira ◽  
Beda Barkokebas ◽  
Lana Secchi ◽  
Mustafa Gul ◽  
YuXiang Chen ◽  
...  

In countries with cold climates such as Canada, the cost of providing space heating during the construction phase, also known as temporary heating, results in a significant additional construction cost, which causes budget deviations thus affecting the projectäó»s financial performance. In fact, the estimation of temporary heating is commonly overlooked due to the uncertainties such as weather forecast and the projectäó»s actual onsite schedule. The cost of temporary heating comprises two parts: (1) the cost of equipment rental, and (2) the fuel consumption required to heat a given area when the temperature falls below a certain threshold. The fuel consumption of the equipment is related to the temperature and exposure of the buildingäó»s envelope to the current weather conditions. Thus, the construction of the building envelope is critical to the reduction of fuel consumption and the consequent temporary heating cost of the project. In this context, the research presented in this paper aims to estimate the impacts of temporary heating for various constructive methods, such as the traditional stick-built practice and a few variations of panelized construction (in regard to the insulation used), by developing a simulation model to observe the variation of weather data, construction schedule, and fuel consumption for each scenario. To perform this analysis, a 4-story residential building located in the city of Edmonton, Alberta, Canada, is used as a case study in which the proposed scenarios are compared in order to address the advantages of industrialized components in reducing the cost of temporary heating.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 405
Author(s):  
Amy Huynh ◽  
Regina Dias Barkokebas ◽  
Mohamed Al-Hussein ◽  
Carlos Cruz-Noguez ◽  
Yuxiang Chen

Due to the energy and environmental impacts attributed to the operational phase of the building sector, efforts have been made to improve building energy performance through the implementation of restrictive energy requirements by regulatory bodies. In this context, the primary objective of this paper is to investigate and compare regulations that govern the building envelope energy performance of new residential buildings in cold-climate regions, primarily in Canada, Finland, Iceland, Norway, Sweden, China, and Russia. The aim is to identify similarities and dissimilarities among the energy regulations of these countries, as well as potentials for development of more effective building codes. This study verifies that the investigated energy requirements diverge considerably—for instance, the required thermal resistance per unit area of above-grade exterior walls in Sweden is almost two times that of a similar climate zone in Canada. Based on the comparisons and case analyses, recommendations for energy requirements pertinent to building envelope of new residential buildings in cold-climate regions are proposed.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3486
Author(s):  
Andrés Soto ◽  
Pedro Martínez ◽  
Victor M. Soto ◽  
Pedro J. Martínez

Natural ventilation, combined with a passive cooling system, can provide significant energy savings in the refrigeration of indoor spaces. The performance of these systems is highly dependent on outdoor climatic conditions. The objective of this study was to analyse the feasibility of a passive, downdraught, evaporative cooling system driven by solar chimneys in different climatic zones by using an experimentally validated simulation tool. This tool combined a ventilation model and a thermal model of the dwelling in which an empirical model of a direct evaporative system made of plastic mesh was implemented. For experimental validation of the combined model, sensors were installed in the dwelling and calibrated in the laboratory. The combined model was applied to Spanish and European cities with different climates. In the simulation, values of cooling energy per volume of air ranging between 0.53 Wh/m3 and 0.79 Wh/m3 were obtained for Alicante (hot climate with moderate humidity) and Madrid (hot and dry climate), respectively. In these locations, medium and high applicability was obtained, respectively, in comparison with Burgos (cold climate with moderate humidity) and Bilbao (cold and humid climate), which were low. The evaluation of the reference building in each location allowed establishing a classification in terms of performance, comfort and applicability for each climate.


Sign in / Sign up

Export Citation Format

Share Document