Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw

2016 ◽  
Vol 117 ◽  
pp. 538-547 ◽  
Author(s):  
Mahmoud Elsayed ◽  
Yves Andres ◽  
Walid Blel ◽  
Ali Gad ◽  
Abdelkader Ahmed
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2483 ◽  
Author(s):  
Agnieszka Garlicka ◽  
Monika Zubrowska-Sudol ◽  
Katarzyna Umiejewska ◽  
Otton Roubinek ◽  
Jacek Palige ◽  
...  

The main purpose of this study was the assessment of the possibility of increasing the production of biogas through the pre-treatment of thickened excess sludge (TES) by means of the hydrodynamic cavitation (HC) conducted at different levels of energy density (EL) i.e., 70, 140 and 210 kJ/L. The experiments were performed on a pilot scale, and a mixture of thickened primary sludge (TPS) and TES was used as digester feed. The results documented that an important parameter determining the possibility of obtaining an enhanced methane production is the value of energy input in the HC process. This parameter determines the changes occurring in sludge as a result of disintegration (i.e., sludge floc deagglomeration, lysis of cells, re-flocculation process and the related release of compounds susceptible to biodegradation from sludge flocs). The maximum increase in methane yield (MY) of 152% was obtained for EL = 140 kJ/L. In this case, HC mainly caused sludge floc deagglomeration. An increase in MY was also recorded when TES was subject to the disintegration process at EL = 210 kJ/L. However, it was 4.3 times lower than that observed for EL = 140 kJ/L. Pre-treatment of TES at EL = 70 kJ/L did not contribute to an increase in methane production.


2020 ◽  
Vol 12 (8) ◽  
pp. 3441 ◽  
Author(s):  
Saba Seyedi ◽  
Kaushik Venkiteshwaran ◽  
Nicholas Benn ◽  
Daniel Zitomer

Pyrolysis can convert wastewater solids into useful byproducts such as pyrolysis gas (py-gas), bio-oil and biochar. However, pyrolysis also yields organic-rich aqueous pyrolysis liquid (APL), which presently has no beneficial use. Autocatalytic pyrolysis can beneficially increase py-gas production and eliminate bio-oil; however, APL is still generated. This study aimed to utilize APLs derived from conventional and autocatalytic wastewater solids pyrolysis as co-digestates to produce biomethane. Results showed that digester performance was not reduced when conventional APL was co-digested. Despite having a lower phenolics concentration, catalyzed APL inhibited methane production more than conventional APL and microbial community analysis revealed a concomitant reduction in acetoclastic Methanosaeta. Long-term (over 500-day) co-digestion of conventional APL with synthetic primary sludge was performed at different APL organic loading rates (OLRs). Acclimation resulted in a doubling of biomass tolerance to APL toxicity. However, at OLRs higher than 0.10 gCOD/Lr-d (COD = chemical oxygen demand, Lr = liter of reactor), methane production was inhibited. In conclusion, conventional APL COD was stoichiometrically converted to methane in quasi steady state, semi-continuous fed co-digesters at OLR ≤ 0.10 gCOD/Lr-d. Undetected organic compounds in the catalyzed APL ostensibly inhibited anaerobic digestion. Strategies such as use of specific acclimated inoculum, addition of biochar to the digester and pretreatment to remove toxicants may improve future APL digestion efforts.


BioResources ◽  
2015 ◽  
Vol 10 (4) ◽  
Author(s):  
Yonglan Xi ◽  
Zhizhou Chang ◽  
Xiaomei Ye ◽  
Jing Du ◽  
Guangyin Chen ◽  
...  

Resources ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 118
Author(s):  
Jose D. Marin-Batista ◽  
Angel F. Mohedano ◽  
Angeles de la Rubia

This study assessed the breakdown of lignocellulosic biomass (LB) with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) as a pretreatment to increase the methane yield. The pretreatment was conducted for wheat straw (WS), barley straw (BS), and grape stem (GS) at 120 °C for 120 min, using several LB to [Emim][Ac] ratios (1:1, 1:3, and 1:5 w/w). Pretreatment significantly disrupted the lignocellulose matrix of each biomass into soluble sugars. GS showed the highest sugar yield, which was followed by WS, while BS was slightly hydrolyzed (175.3 ± 2.3, 158.2 ± 5.2, and 51.1 ± 3.1 mg glucose g–1 biomass, respectively). Likewise, the pretreatment significantly reduced the cellulose crystallinity index (CrI) of the resulting solid fractions of GS and WS by 15% and 9%, respectively, but slightly affected the CrI of BS (5%). Thus, BMP tests were only carried out for raw and hydrothermally and [Emim][Ac] (1:5) pretreated GS and WS. The untreated GS and WS showed similar methane yields to those achieved for the solid fraction obtained after pretreatment with an LB to [Emim][Ac] ratio of 1:5 (219 ± 10 and 368 ± 1 mL CH4 g–1 VS, respectively). The methane production of the solid plus liquid fraction obtained after IL pretreatment increased by 1.61- and 1.34-fold compared to the raw GS and WS, respectively.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5391
Author(s):  
Christine Peyrelasse ◽  
Abdellatif Barakat ◽  
Camille Lagnet ◽  
Prasad Kaparaju ◽  
Florian Monlau

During the last decade, the application of pretreatment has been investigated to enhance methane production from lignocellulosic biomass such as wheat straw (WS). Nonetheless, most of these studies were conducted in laboratory batch tests, potentially hiding instability problems or inhibition, which may fail in truly predicting full-scale reactor performance. For this purpose, the effect of an alkaline pretreatment on process performance and methane yields from WS (0.10 g NaOH g−1 WS at 90 °C for 1 h) co-digested with fresh wastewater sludge was evaluated in a pilot-scale reactor (20 L). Results showed that alkaline pretreatment resulted in better delignification (44%) and hemicellulose solubilization (62%) compared to untreated WS. Pilot-scale study showed that the alkaline pretreatment improved the methane production (261 ± 3 Nm3 CH4 t−1VS) compared to untreated WS (201 ± 6 Nm3 CH4 t−1VS). Stable process without any inhibition was observed and a high alkalinity was maintained in the reactor due to the NaOH used for pretreatment. The study thus confirms that alkaline pretreatment is a promising technology for full-scale application and could improve the overall economic benefits for biogas plant at 24 EUR t−1 VS treated, improve the energy recovery per unit organic matter, reduce the digestate volume and its disposal costs.


2021 ◽  
Author(s):  
GOKCE KURT ◽  
Rumeysa Doluk ◽  
Hulya Civelek Yoruklu ◽  
Ahmet Demir ◽  
Bestami Ozkaya

Abstract Bioenergy production from lignocellulosic biomass is challenging due to its structure and a pretreatment is required before methane production. In this study, biological pretreatment by using rumen microorganisms was applied for different types of lignocellulosic wastes: wheat straw, cotton stalk, reeds and sunflower stalk. The reactors were pretreated for 2, 5, 10, 15 and 20 days. After the pretreatment stages and gas measurements were done, reactors were separated into two phases as lower solid phase and upper liquid phase. The reactors were installed for the methanation stage, gas measurements were made at regular intervals and graphs were drawn using the cumulative results. Modified Gompertz equation was used to estimate potential biogas production. According to the results, the reactor containing 5 days pretreated wheat straw became prominent among the other reactors in terms of biogas and methane production with 163 ml and 102 ml, respectively. It was followed by 20 days pretreated reeds with 104 ml biogas and 80 ml methane, 2 days pretreated sunflower stalk with 88 ml biogas and 52 ml methane, and 2 days pretreated cotton stalk with 87 ml biogas and 50 ml methane.


Environments ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 42 ◽  
Author(s):  
Moshe Habagil ◽  
Alexander Keucken ◽  
Ilona Sárvári Horváth

The majority of municipal Wastewater Treatment Plants (WWTPs) in Sweden produce biogas from sewage sludge. In order to increase the methane production, co-digestion of internal sludge with Organic Fraction of Municipal Solid Waste (OFMSW) might be feasible in the future. The objective of this study was therefore to find a beneficial solution for the utilization of OFMSW at the WWTP in Varberg, Sweden. The effects of co-digesting primary sludge (PS) and OFMSW collected in the municipality, in different mixing ratios, were investigated by semi-continuous anaerobic digestion assays. Furthermore, the effects of the addition of a commercial trace elements mixture solution (CTES), available on the market in Sweden, were also examined. Co-digestion of OFMSW and PS resulted in specific methane yields of 404, 392, and 375 NmL CH4/g volatile solids (VS), obtained during semi-continuous operations of 301, 357 and 385 days, for the reactors fed with OMFSW:PS ratio of 4:1, 3:1, and 1:1, and at maximum organic loading rates (OLRs) achieved of 4.0, 4.0 and 5.0 gVS/L/d, respectively. Furthermore, mono-digestion of OFMSW failed already at OLR of 1.0 gVS/L/d, however, an OLR of 4.0 gVS/L/d could be achieved with addition of 14 µL/g VS Commercial Trace Element Solutions (CTES) leading to 363 mL CH4/g VS methane production. These experiments were running during 411 days. Hence, higher process efficiency was obtained when using co-digestion of OFMSW and PS compared to that of OFMSW in mono-digestion. Co-digestion is a more feasible option where a balanced Carbon/Nitrogen (C/N) ratio and nutrient supply can be maintained.


Sign in / Sign up

Export Citation Format

Share Document