An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity

2004 ◽  
Vol 71 (16-17) ◽  
pp. 2319-2327 ◽  
Author(s):  
Dan Zheng ◽  
Qingbin Li
2000 ◽  
Author(s):  
Paul Moy ◽  
Jerome Tzeng

Abstract Fracture toughness properties of composite laminates were evaluated at a loading rate commonly observed in ordinance applications. The laminates are composed of IM7 graphite and a small volume fraction of S2 glass plies to form a cross-ply laminate. Fracture toughness appears to be very rate sensitive if the crack growth perpendicular to the plane dominated by glass/matrix property. Experimental data shows a 30–40% increase of fracture toughness for various layup as the loading rate was increase by 1000 times. The specimens examined under microscopic indicates the strengthening might due to different failure mechanism in the matrix. In addition, there is no visible rate effect if the crack propagation is perpendicular to the graphite dominant plane.


2014 ◽  
Vol 638-640 ◽  
pp. 1391-1396
Author(s):  
Hong Yu Zhou ◽  
Yi Bo Chen ◽  
Ya Ran Zhang ◽  
Hai Qian Wang

Introducing research progress of rate-dependent tests by domestic and foreign scholars, strain-rate effect on dynamic mechanical properties of concrete are reviewed. Classified descriptions of research results on dynamic load tests of concrete at home and abroad are provided, including uniaxial compression tests, uniaxial tensile tests, and multi-axis tests; strain-rate effects on concrete strength and deformation properties in each test are respectively discussed; and strain-rate effect on concrete energy absorption capability are described.


2011 ◽  
Vol 284-286 ◽  
pp. 984-988
Author(s):  
An Shun Cheng ◽  
Yue Lin Huang ◽  
Chung Ho Huang ◽  
Tsong Yen

The study aims to research the effect of the particle size of fly ash on the compressive strength and fracture toughness of high performance concrete (HPC). In all HPC mixtures, the water-to-binder ratio selected is 0.35; the cement replacement ratios includes 0%, 10% and 20%; the particle sizes of fly ash have three types of passing through sieves No. 175, No. 250 and No. 325. Three-point-bending test was adopted to measure the load-deflection relations and the maximum loads to determine the fracture energy (GF) and the critical stress intensity factor (KSIC). Test results show that adding fly ash in HPC apparently enhances the late age strengths of HPC either for replacement ratio of 10% or 20%, in which the concrete with 10% fly ash shows the higher effect. In addition, the smaller the particle size is the better the late age concrete strength will be. The HPC with the finer fly ash can have higher strength development and the values of GF and KSIC due to the facts of better filling effect and pozzolanic reaction. At late age, the GF and KSIC values of concrete with 10% fly ash are all higher than those with 20% fly ash.


2007 ◽  
Vol 74 (15) ◽  
pp. 2311-2319 ◽  
Author(s):  
Dan Zheng ◽  
Qingbin Li ◽  
Linbing Wang

2011 ◽  
Vol 4 (4) ◽  
pp. 582-591 ◽  
Author(s):  
M. S. Lorrain ◽  
M. P. Barbosa ◽  
L. C. P. Silva Fº

Quality control of structural concrete has been conducted for several decades based mainly on the results of axial compression tests. This kind of test, although widely used, is not exempt from errors and has some considerable drawbacks that may affect its reliability, such as the need for appropriate and careful specimen conditioning and adoption of adequate capping techniques. For these reasons, it would be useful to have complementary or alternative ways to check compressive strength, in order to improve concrete quality control. The use of a bond test to monitor concrete strength is being proposed by an international group of researchers from France, Tunisia and Brazil as a potential means to this end. Given the fact that the link between bond resistance and concrete strength is already well established, this type of test seems to be a viable alternative to traditional methods. Nonetheless, to check if the underlying principle is sound when used in different circumstances, the group has been gathering data from several studies conducted by different researchers in various countries, with distinct concretes and rebar types. An analysis of the data collected shows that there is a clear and strong correlation between bond resistance and compressive strength, no matter the influence of other variables. This result validates the basic idea of using an Appropriate Pull-Out (APULOT) bond test to assess concrete strength. If the general principle is valid for random data obtained from different studies, the definition of a clear and appropriate test will probably lead to the reduction of experimental noise and increase the precision of the strength estimates obtained using this method.


2020 ◽  
Vol 8 (4) ◽  
pp. 37-42
Author(s):  
Andrei Pavlov ◽  
Yurii Gol'tsov ◽  
Levon Mailyan ◽  
Sergey Stel'makh ◽  
Evgeniy Shcherban' ◽  
...  

The analysis of the influence of ultraviolet irradiation of building sand, which is a filler in a concrete mixture, on the dependence of the strength of concrete on the content of filler is carried out. With an increase in the content of sand due to the hydrophilicity of the surface of its particles in the mixture, the amount of free water required for the hydration of cement and the formation of cement stone decreases. Along with a decrease in the content of binder cement, this factor is an additional reason for a decrease in the strength of concrete with an increase in the content of sand. Ultraviolet irradiation leads to dehydration of the surface of the sand particles and the appearance of hydrophobic centers. As the hydrophobicity of the sand in the concrete mix increases, the content of free water available for cement hydration increases, and the strength of the cement stone increases. The change in the hydrophobicity of the surface of sand particles depending on the time of irradiation is non-monotonic. Therefore, there is an optimal UV activation mode that provides the greatest increase in concrete strength.


Author(s):  
Jin Weon Kim ◽  
Myung Rak Choi ◽  
Sang Bong Lee ◽  
Yun Jae Kim

This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to clearly understand the fracture behavior of piping materials under excessive seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature (RT) and the operating temperature of nuclear power plants (NPPs), i.e., 316°C. SA508 Gr. 1a lo w-alloy steel (LAS) and SA312 TP316 stainless steel (SS) piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 SS was independent of the loading rate at both RT and 316°C. For SA508 Gr. 1a LAS, the loading rate effect on the fracture behavior was appreciable at 316°C under both cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio (R) was −1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = −1 at a quasi-static loading rate.


Sign in / Sign up

Export Citation Format

Share Document