scholarly journals Three-dimensional analytical model for effective elastic constants of transversely isotropic plates with multiple cracks: Application to stiffness reduction and steady-state cracking of composite laminates

2019 ◽  
Vol 219 ◽  
pp. 106595 ◽  
Author(s):  
Sota Onodera ◽  
Tomonaga Okabe
2010 ◽  
Vol 26 (3) ◽  
pp. 345-353 ◽  
Author(s):  
S.-F. Hwang ◽  
J.-C. Wu ◽  
Evgeny Barkanovs ◽  
Rimantas Belevicius

AbstractA numerical method combining finite element analysis and a hybrid genetic algorithm is proposed to inversely determine the elastic constants from the vibration testing data. As verified from composite material specimens, the repeatability and accuracy of the proposed inverse determination method are confirmed, and it also proves that the concept of effective elastic constants is workable. Moreover, three different sets of assumptions to reduce the five independent elastic constants to four do not make clear difference on the obtained results by the proposed method. In addition, to obtain robust values of the five elastic constants for a transversely isotropic material, it is recommended to use the out-of-plane Poisson's ratio instead of the out-of-plane shear modulus as the fifth one.


2018 ◽  
Vol 52 (22) ◽  
pp. 3109-3124 ◽  
Author(s):  
Yang Yan ◽  
Alfonso Pagani ◽  
Erasmo Carrera ◽  
Qingwen Ren

The present work proposes a closed-form solution based on refined beam theories for the static analysis of fiber-reinforced composite and sandwich beams under simply supported boundary conditions. The higher-order beam models are developed by employing Carrera Unified Formulation, which uses Lagrange-polynomials expansions to approximate the kinematic field over the cross section. The proposed methodology allows to carry out analysis of composite structure analysis through a single formulation in global-local sense, i.e. homogenized laminates at a global scale and fiber-matrix constituents at a local scale, leading to component-wise analysis. Therefore, three-dimensional stress/displacement fields at different scales can be successfully detected by increasing the order of Lagrange polynomials opportunely. The governing equations are derived in a strong-form and solved in a Navier-type sense. Three benchmark numerical assessments are carried out on a single-layer transversely isotropic beam, a cross-ply laminate [Formula: see text] beam and a sandwich beam. The results show that accurate displacement and stress values can be obtained in different parts of the structure with lower computational cost in comparison with traditional, enhanced as well as three-dimensional finite element methods. Besides, this study may serve as benchmarks for future assessments in this field.


2021 ◽  
pp. 105678952110392
Author(s):  
H Ahmadi ◽  
M Hajikazemi ◽  
W Van Paepegem

Accurate prediction of stiffness degradation in the damaged plies (laminae) is a fundamental requirement for developing damage models for composite materials. In this study, a mesoscale analysis is proposed to predict all the effective thermo-elastic constants of damaged plies containing ply cracks and delaminations based on a numerical homogenization method. To do so, the in-plane and out-of-plane loading conditions are imposed on the three-dimensional representative volume elements (RVEs) using the periodic boundary conditions (PBCs). Considering the stress/strain fields obtained from the numerical simulations, the effective behavior of the damaged plies is evaluated. Moreover, the effects of various damage configurations, material properties, orientations of adjacent plies and ply thicknesses are studied to address the dependency of the effective elastic constants to those parameters. Numerical results reveal that the ply cracking and delaminations significantly reduce the in-plane and out-of-plane properties ([Formula: see text], [Formula: see text],[Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]) of the damaged plies. Furthermore, to demonstrate the accuracy and capability of the developed homogenization method, the homogenized properties of the damaged plies are used in the intact laminates where the stiffness of such laminates are compared with direct FE simulation and available experimental data of the laminates containing ply cracks and local delamination.


2013 ◽  
Vol 554-557 ◽  
pp. 2175-2186
Author(s):  
Alexander Ivanovich Oleinikov

ALEXANDER IVANOVICH OLEINIKOV Aircraft Engineering Faculty, Komsomolsk-on-Amur State Technical University Lenina prospect 27, 681013 Komsomolsk-on-Amur, Russian Federation [email protected] Keywords: forming, creep, age, transversely isotropic, kind of the stress state effect, wing panel, inverse problem, reverse engineering, computer-aided process design system. Abstract. Problems of inelastic straining of three-dimensional bodies with large displacements and turns are considered. In addition to the sought fields, surface forces and boundary displacements, original size and shape have also to be determined from specified residual displacements in these problems. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We proposed the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence [1]. The forming process considered includes two stages: active stage of elastoviscoplastic straining of the blank in the die tooling and passive stage of unloading of the blank withdrawn from the die tooling. The final stress-strain state at the active stage is the initial state for the passive stage. Unloading is considered as purely elastic straining, with no increments of inelastic strains. The active stage, in turn, also includes two steps. At the first step, the frontal faces of the “cold” blank are pressed to the working surfaces of the die tooling, which results in elastoplastic straining of the blank. The second step includes the processes of stress relaxation and creep strain in the blank fixed in this die tooling during a given time at an elevated ageing temperature. Computer modeling of these forming processes involves the use of the finite element method for consecutive solutions of three-dimensional quasi-static problems of elastoplastic straining, relaxation, and unloading, and also determining boundary conditions from given residual displacements [2] . The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. System application data resulting from computation of 3D-involute of a CAD-based panel model, determination of working surfaces of die tooling, three-dimensional analysis of stresses, and simulation of panel shaping under diverse thermo-mechanical and speed conditions are demonstrated. Modeling of forming of wing panels of the SSJ-100 aircraft are considered [2,3]. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming [3]. References [1] A.I. Oleinikov, Models for the steady-state creep of transversely isotropic materials with different tension and compression characteristics, J. Ind. Appl. Math. 5 (2011) 406-409. [2] B.D. Annin, A.I. Oleinikov and K.S. Bormotin, Modeling of forming of wing panels of the SSJ-100 aircraft, J. Appl. Mech. Physics 51 (2010) 579-589. [3] A.I. Oleinikov, A.I. Pekarsh, Integrated Design of Integral Panel Manufacture Processes. Dalnauka, Vladivostok, 2010.


2005 ◽  
Vol 73 (2) ◽  
pp. 338-341 ◽  
Author(s):  
A. Mahmoud ◽  
A. H. Shah ◽  
S. B. Dong

In this paper, transient three-dimensional response of a transversely isotropic composite plate to a time varying point load is efficiently computed by reducing the elastodynamic equation through integral and coordinate transformations to a series of two-dimensional problems, each associated with a plane wave along a given direction in the plate. Discrete equations of a semi-analytical finite element model are solved for the thickness profile eigendata at a given frequency. Three-dimensional steady state responses in the wave number domain are formed by summing contributions from eigenmodes over propagation directions. The transient response is obtained by a numerical integration of inverse Fourier time transform of these steady state responses. Present results showed good agreement with data reported in the literature and confirmed previously observed phenomena.


Sign in / Sign up

Export Citation Format

Share Document