Distribution of 40K, 238U and 232Th and associated radiological risks in river sand sediments across Enugu East, Nigeria

2020 ◽  
Vol 14 ◽  
pp. 100317
Author(s):  
Fredrick Oghenebrorie Ugbede
Keyword(s):  
Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


2021 ◽  
Vol 13 (8) ◽  
pp. 4169
Author(s):  
Congtao Sun ◽  
Ming Sun ◽  
Tao Tao ◽  
Feng Qu ◽  
Gongxun Wang ◽  
...  

Chloride binding capacity and its effect on the microstructure of mortar made with marine sand (MS), washed MS (WMS) and river sand (RS) were investigated in this study. The chloride contents, hydration products, micromorphology and pore structures of mortars were analyzed. The results showed that there was a diffusion trend for chloride ions from the surface of fine aggregate to cement hydrated products. During the whole curing period, the free chloride content in the mortars made by MS and WMS increased firstly, then decreased and stabilized finally with time. However, the total chloride content of three types of mortar hardly changed. The bound chloride content in the mortars made by MS and WMS slightly increased with time, and the bound chloride content included the MS, the WMS and the RS arranged from high to low. C3A·CaCl2·10H2O (Friedel’s salt) was formed at the early age and existed throughout the curing period. Moreover, the volume of fine capillary pore with a size of 10–100 nm increased in the MS and WMS mortar.


cftm ◽  
2021 ◽  
Author(s):  
Steven F. Vaughn ◽  
Charles Theiling ◽  
Paul Rosenbohm ◽  
Fred J. Eller ◽  
Steven C. Peterson
Keyword(s):  

Author(s):  
Affan Habib ◽  
Mustaque Hossain ◽  
Rajesh Kaldate ◽  
Glenn Fager

Superpave and Marshall mix designs using local aggregates were done to study the suitability of the Superpave mix design as compared with the Marshall mix design for low-volume roads, especially shoulders. The project site was Kansas Route 177 in northeast Kansas. Three locally available aggregates, crushed limestone and coarse and fine river sands, were used in this study. Five blends with varying proportions of coarse and fine river sands were selected. Mix samples were compacted in the Superpave gyratory compactor with the applicable number of gyrations and were compacted with the Marshall hammer by using 50 blows per face. Bulk densities of the compacted samples and maximum specific gravities of loose samples also were measured for each blend. The results show that the Superpave mix design for low-volume roads and shoulders results in lower estimated asphalt content than does the Marshall method. The required asphalt content increases as the proportion of coarse river sand increases in the mix. Superpave requirements for the voids filled with asphalt (VFA) for low-volume traffic, that is, less than 0.3 million equivalent single-axle loads, appeared to be too high. High asphalt film thicknesses were computed for the mixtures that did not meet the Superpave VFA requirements. Lowering the design number of gyrations (Ndes) for compaction of samples would result in increased asphalt requirement for the Superpave mixture with a given gradation.


Author(s):  
Babatunde Ogunbayo ◽  
Clinton Aigbavboa ◽  
Opeoluwa Akinradewo

Sandcrete block is a vital building material used in the construction of building structures. The sandcrete blocks are produced by different manufacturers using river sand obtained from different locations as aggregate material without recourse to the minimum quality standard for the blocks produced. The study assessed the strength parameters of river sand used as an aggregate material in block production to determine its quality and suitability in relation to the strength of block produced. Three (3) block manufacturing sites in Nigeria were visited and 27 (twenty-seven) blocks of size 450 mm x 225 mm x 225 mm were selected randomly from the sites. The properties of the river sand was analyzed through sieve analyses, bulk density, silt content and water absorption while the compressive strength of the blocks was also tested. The result of sieve analysis of the river sand used in block production for this study all satisfied the particle size requirements of BS EN 933-1:1997 for general construction work including block production. The result of the study also shows that blocks produced with the river sand after 28days have an average compressive strength of 1.23 N/mm2 (SW), 1.54 N/mm2 (SE) and 1.95N/mm2 (NE). The study, therefore, concluded and recommended that regulatory and professional bodies in partnership with relevant associations should organize seminars for producers of sandcrete blocks on the best practices involved in producing quality sandcrete blocks.


Sign in / Sign up

Export Citation Format

Share Document