New evidence for the functional roles of secondary metabolites in plant–environment interactions

2015 ◽  
Vol 119 ◽  
pp. 1-3 ◽  
Author(s):  
Christian Jay-Allemand ◽  
Massimiliano Tattini ◽  
Kevin S. Gould
Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 359-370 ◽  
Author(s):  
Daniel J Kliebenstein ◽  
Jonathan Gershenzon ◽  
Thomas Mitchell-Olds

Abstract Secondary metabolites are a diverse set of plant compounds believed to have numerous functions in plant-environment interactions. Despite this importance, little is known about the regulation of secondary metabolite accumulation. We are studying the regulation of glucosinolates, a large group of secondary metabolites, in Arabidopsis to investigate how secondary metabolism is controlled. We utilized Ler and Cvi, two ecotypes of Arabidopsis that have striking differences in both the types and amounts of glucosinolates that accumulate in the seeds and leaves. QTL analysis identified six loci determining total aliphatic glucosinolate accumulation, six loci controlling total indolic glucosinolate concentration, and three loci regulating benzylic glucosinolate levels. Our results show that two of the loci controlling total aliphatic glucosinolates map to biosynthetic loci that interact epistatically to regulate aliphatic glucosinolate accumulation. In addition to the six loci regulating total indolic glucosinolate concentration, mapping of QTL for the individual indolic glucosinolates identified five additional loci that were specific to subsets of the indolic glucosinolates. These data show that there are a large number of variable loci controlling glucosinolate accumulation in Arabidopsis thaliana.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carni Lipson Feder ◽  
Oded Cohen ◽  
Anna Shapira ◽  
Itay Katzir ◽  
Reut Peer ◽  
...  

In the last decades, growing evidence showed the therapeutic capabilities of Cannabis plants. These capabilities were attributed to the specialized secondary metabolites stored in the glandular trichomes of female inflorescences, mainly phytocannabinoids and terpenoids. The accumulation of the metabolites in the flower is versatile and influenced by a largely unknown regulation system, attributed to genetic, developmental and environmental factors. As Cannabis is a dioecious plant, one main factor is fertilization after successful pollination. Fertilized flowers are considerably less potent, likely due to changes in the contents of phytocannabinoids and terpenoids; therefore, this study examined the effect of fertilization on metabolite composition by crossbreeding (-)-Δ9-trans-tetrahydrocannabinol (THC)- or cannabidiol (CBD)-rich female plants with different male plants: THC-rich, CBD-rich, or the original female plant induced to develop male pollen sacs. We used advanced analytical methods to assess the phytocannabinoids and terpenoids content, including a newly developed semi-quantitative analysis for terpenoids without analytical standards. We found that fertilization significantly decreased phytocannabinoids content. For terpenoids, the subgroup of monoterpenoids had similar trends to the phytocannabinoids, proposing both are commonly regulated in the plant. The sesquiterpenoids remained unchanged in the THC-rich female and had a trend of decrease in the CBD-rich female. Additionally, specific phytocannabinoids and terpenoids showed an uncommon increase in concentration followed by fertilization with particular male plants. Our results demonstrate that although the profile of phytocannabinoids and their relative ratios were kept, fertilization substantially decreased the concentration of nearly all phytocannabinoids in the plant regardless of the type of fertilizing male. Our findings may point to the functional roles of secondary metabolites in Cannabis.


2020 ◽  
Author(s):  
Matthias Erb ◽  
Daniel J. Kliebenstein

The plant kingdom produces hundreds of thousands of small molecular weight organic compounds. Based on their assumed functions, the research community has classified them into three overarching groups: primary metabolites which are directly required for plant growth, secondary (or specialized) metabolites which mediate plant-environment interactions and hormones which regulate organismal processes, including metabolism. For decades, this functional trichotomy has shaped theory and experimentation in plant biology. However, evidence is accumulating that the boundaries between the different types of metabolites are blurred. An increasing number of mechanistic studies demonstrate that secondary metabolites are multifunctional and can act as potent regulators of plant growth and defense. Secondary metabolites are also re-integrated into primary metabolism, thus behaving like primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multi-functionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current classification system for plant metabolites and suggests that viewing them as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.


2013 ◽  
Vol 109 (3) ◽  
pp. 621-624 ◽  
Author(s):  
Robert L. Whitwell ◽  
Gavin Buckingham

Goodale and Milner's (1992) “vision-for-action” and “vision-for-perception” account of the division of labor between the dorsal and ventral “streams” has come to dominate contemporary views of the functional roles of these two pathways. Nevertheless, some lines of evidence for the model remain controversial. Recently, Thomas Schenk reexamined visual form agnosic patient DF's spared anticipatory grip scaling to object size, one of the principal empirical pillars of the model. Based on this new evidence, Schenk rejects the original interpretation of DF's spared ability that was based on segregated processing of object size and argues that DF's spared grip scaling relies on haptic feedback to calibrate visual egocentric cues that relate the posture of the hand to the visible edges of the goal-object. However, a careful consideration of the tasks that Schenk employed reveals some problems with his claim. We suspect that the core issues of this controversy will require a closer examination of the role that cognition plays in the operation of the dorsal and ventral streams in healthy controls and in patient DF.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hepeng Zhang ◽  
Fanyu Meng ◽  
Shuaicheng Dong

Osteosarcoma (OS) is a widely common sort among bone cancer in children, and its overall survival ratio is low. The hidden mechanism of tumor genesis, progression, and metastasis regarding osteosarcoma needed to be further investigated. Emerging studies concentrated on exploring the functional roles of circular RNAs (circRNAs) in human cancers. The present study conducted a loss-of-function experiments to explore the circSMARCA5-induced influence on OS proliferation, cell cycle, and metastasis. Moreover, our manuscript unearthed the potential mechanisms of circSMARCA5 in regulating OS progression by in silico analysis. Our findings would provide new evidence to support that circSMARCA5 could be indicated as a biomarker for OS.


2019 ◽  
Vol 294 (46) ◽  
pp. 17684-17692 ◽  
Author(s):  
Joshua P. Torres ◽  
Eric W. Schmidt

Secondary metabolites are often considered within the remit of bacterial or plant research, but animals also contain a plethora of these molecules with important functional roles. Classical feeding studies demonstrate that, whereas some are derived from diet, many of these compounds are made within the animals. In the past 15 years, the genetic and biochemical origin of several animal natural products has been traced to partnerships with symbiotic bacteria. More recently, a number of animal genome-encoded pathways to microbe-like natural products have come to light. These pathways are sometimes horizontally acquired from bacteria, but more commonly they unveil a new and diverse animal biochemistry. In this review, we highlight recent examples of characterized animal biosynthetic enzymes that reveal an unanticipated breadth and intricacy in animal secondary metabolism. The results so far suggest that there may be an immense diversity of animal small molecules and biosynthetic enzymes awaiting discovery. This biosynthetic dark matter is just beginning to be understood, providing a relatively untapped frontier for discovery.


Author(s):  
Neelima Rathi ◽  
Keerthana Harwalkar ◽  
Jayashree V ◽  
Ashwani Sharma ◽  
Nagashree N Rao

  Objective: Rich endowment of traditional knowledge plays a critical role in health care, food security, culture, environment and development. Traditional knowledge is also widely used by the aromatic, flavoring, food and health industries. Plant-based traditional medicine has often been used to identify and fast-track the development of modern food and drugs. Plants synthesize such wide array of secondary metabolites that includes alkaloids, glucosinolates, terpenoids and phenylpropanoids. This study is aimed to review on indigenous and exotic medicinal plants containing an astounding food flavoring metabolite; 2-hydroxy-4-methoxybenzaldehyde (HMB).Material and Method: The review focuses on the isomer of vanillin, 2-hydroxy-4-methoxybenzaldehyde, also called MBALD, HMB, or 2H4MB, a flavor compound that is generally found in the roots and rhizomes of medicinal plants. This food flavoring phenylpropenoid is one of the least investigated isomers of vanillin. HMB is known to exhibit a wide array of medicinal properties. Though the molecular role of these metabolites remains largely unknown, they are known to play a key role in plant-environment interactions/stress response/defence signaling and application in pharmaceutical and nutraceutical industries.Discussion and Conclusion: One of the key secondary metabolites is the group of phenylproponoids synthesized either through shikimic acid pathway or the malonate/acetate pathway. Phenylalanine ammonia lyase (PAL) is the enzyme involved in phenylpropanoid pathway catalysing the deamination of phenylalanine to synthesize cinnamic acid that subsequently synthesizes variety of phenylpropanoid products. Inspite of its medicinal importance, the regulatory molecular mechanism underlying the biosynthetic pathway is largely unknown.


Sign in / Sign up

Export Citation Format

Share Document