Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.)

2020 ◽  
Vol 179 ◽  
pp. 104203
Author(s):  
Xiaodong Fan ◽  
Xu Cao ◽  
Haoran Zhou ◽  
Lihua Hao ◽  
Wei Dong ◽  
...  
2019 ◽  
Vol 37 (1) ◽  
pp. 82-88
Author(s):  
Alexandre Igor A Pereira ◽  
João de Jesus Guimarães ◽  
João Victor Costa ◽  
Fernando S de Cantuário ◽  
Leandro C Salomão ◽  
...  

ABSTRACT Water stress compromises plant growth. Resistance inducers, such as potassium silicate (K2SiO3), can reduce negative effects of this stress on Solanaceae, Capsicum annuum. Plant height, stem diameter and leaf area may indicate the efficiency of potassium silicate foliarsprayagainst water stress. The aim of this study was to evaluate the growth of sweet pepper plants under water stress and K2SiO3 doses. The experiment was conducted in randomized blocks in a split-plot scheme in space. The treatments consisted of four soil water stresses: 15 kPa (field capacity), 25 (intermediate value), 35 and 45 kPa (water stress) and three doses of potassium silicate (0, 0.4 and 0.8 L 100 L-1 water), acting as resistance inducers to water stress. The resistance inducer maintained greater heights of the sweet pepper plants, under water stress (35 and 45 kPa) at the initial stage [(20 days after transplanting (DAT)]. Smaller plant diameters were observed at 80 and 100 DAT at 35 and 45 kPa. Sprays using K2SiO3 maintained sweet pepper leaf area with higher values, even under stress condition. The soil water tension from 35 kPa limited, in general, the plant growth. Growth responses in Capsicum annuum to K2SiO3, via foliar spraying, varied according to plant age, as well as the growth parameter considered in this experiment.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 563
Author(s):  
Esther Anokye ◽  
Samuel T. Lowor ◽  
Jerome A. Dogbatse ◽  
Francis K. Padi

With increasing frequency and intensity of dry spells in the cocoa production zones of West Africa, strategies for mitigating impact of water stress on cocoa seedling survival are urgently required. We investigated the effects of applied potassium on biomass accumulation, physiological processes and survival of cocoa varieties subjected to water stress in pot experiments in a gauzehouse facility. Four levels of potassium (0, 1, 2, or 3 g/plant as muriate of potash) were used. Soil water stress reduced plant biomass accumulation (shoot and roots), relative water content (RWC), chlorophyll content and fluorescence. Leaf phenol and proline contents were increased under water stress. Additionally, compared to the well-watered conditions, soils under water stress treatments had higher contents of exchangeable potassium and available phosphorus at the end of the experimental period. Potassium applied under well-watered conditions reduced leaf chlorophyll content and fluorescence and increased leaf electrolyte leakage, but improved the growth and integrity of physiological functions under soil water stress. Potassium addition increased biomass partitioning to roots, improved RWC and leaf membrane stability, and significantly improved cocoa seedling survival under water stress. Under water stress, the variety with the highest seedling mortality accumulated the highest contents of phenol and proline. A significant effect of variety on plant physiological functions was observed. Generally, varieties with PA 7 parentage had higher biomass partitioning to roots and better seedling survival under soil moisture stress. Proportion of biomass partitioned to roots, RWC, chlorophyll fluorescence and leaf electrolyte leakage appear to be the most reliable indicators of cocoa seedling tolerance to drought.


2020 ◽  
Vol 291 ◽  
pp. 108061 ◽  
Author(s):  
Tengcong Jiang ◽  
Zihe Dou ◽  
Jian Liu ◽  
Yujing Gao ◽  
Robert W. Malone ◽  
...  

2009 ◽  
Vol 123 (2) ◽  
pp. 253-257 ◽  
Author(s):  
Zhong Qiang Wang ◽  
Liang Huan Wu ◽  
Sarkar Animesh

1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


Sign in / Sign up

Export Citation Format

Share Document