Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation δ18O

2021 ◽  
Vol 554 ◽  
pp. 116665
Author(s):  
Wusheng Yu ◽  
Tandong Yao ◽  
Lonnie G. Thompson ◽  
Jean Jouzel ◽  
Huabiao Zhao ◽  
...  
2017 ◽  
Author(s):  
Le Duy Nguyen ◽  
Ingo Heidbüchel ◽  
Hanno Meyer ◽  
Bruno Merz ◽  
Heiko Apel

Abstract. This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. Their isotopic content is analyzed by Local Meteoric Water Lines (LMWL) and single-factor regressions. Additionally, the contribution of several regional and local factors is quantified by multiple linear regressions (MLR) of all possible factor combinations and by relative importance analysis, a novel approach for the interpretation of isotopic records. The local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e. precipitation, temperature, relative humidity and moving distance of the backward trajectories, are combined with equivalent local climatic parameters to predict the response variables δ18O, δ2H, and d-excess of precipitation at the station of measurement. The results indicate that (i) MLR can much better explain the isotopic variation of precipitation (R2 = 0.8) compared to single-factor linear regression (R2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (~ 70 %) compared to local climatic conditions (~ 30 %); (iii) the most important climatic parameter during the early rainy season is the precipitation amount along the trajectories of air mass movements; (iv) the influence of local precipitation amount and temperature is not significant during the early rainy season, unlike the regional precipitation amount effect; (v) secondary fractionation processes (e.g. sub-cloud evaporation) take place mainly in the dry season, either locally for δ18O and δ2H, or along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over the seasons, and that the source regions and transport pathways, and in particular the climatic conditions along the pathways, have a large influence on the isotopic composition of rainfall. The proposed methods thus proved to be valuable for the interpretation of the isotopic records in rainfall and the factors controlling it. The results illustrate that the interpretation of the isotopic composition in precipitation as a recorder of local climatic conditions, as for example performed for paleo records of water isotopes, may not be adequate in the Southern part of the Indochinese Peninsula, and likely also not in other regions affected by monsoon processes. However, the presented approach could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based on isotopic records.


2018 ◽  
Vol 123 (11) ◽  
pp. 5927-5946 ◽  
Author(s):  
Clay R. Tabor ◽  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
Jesse Nusbaumer ◽  
Jiang Zhu ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 2973-2983 ◽  
Author(s):  
Christian Rolf ◽  
Bärbel Vogel ◽  
Peter Hoor ◽  
Armin Afchine ◽  
Gebhard Günther ◽  
...  

Abstract. The impact of air masses originating in Asia and influenced by the Asian monsoon anticyclone on the Northern Hemisphere stratosphere is investigated based on in situ measurements. A statistically significant increase in water vapor (H2O) of about 0.5 ppmv (11 %) and methane (CH4) of up to 20 ppbv (1.2 %) in the extratropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 during the HALO aircraft missions Transport and Composition in the UT/LMS (TACTS) and Earth System Model Validation (ESMVal). We investigate the origin of the increased water vapor and methane using the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS). We assign the source of the moist air masses in the Asian region (northern and southern India, eastern China, southeast Asia, and the tropical Pacific) based on tracers of air mass origin used in CLaMS. The water vapor increase is correlated with an increase of the simulated Asian monsoon air mass contribution from about 10 % in August to about 20 % in September, which corresponds to a doubling of the influence from the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the set point of water vapor mixing ratio along these trajectories occurs, can be predominantly attributed to the Asian monsoon region.


2015 ◽  
Vol 45 (11-12) ◽  
pp. 3331-3345 ◽  
Author(s):  
V. Ravi Kiran ◽  
M. Rajeevan ◽  
H. Gadhavi ◽  
S. Vijaya Bhaskara Rao ◽  
A. Jayaraman

Sign in / Sign up

Export Citation Format

Share Document