Novel method for the on-line estimation of low-frequency impedance of lithium-ion batteries

2020 ◽  
Vol 32 ◽  
pp. 101818
Author(s):  
Alexander Karger ◽  
Leo Wildfeuer ◽  
Arpit Maheshwari ◽  
Nikolaos Wassiliadis ◽  
Markus Lienkamp
Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Erik Goldammer ◽  
Julia Kowal

The distribution of relaxation times (DRT) analysis of impedance spectra is a proven method to determine the number of occurring polarization processes in lithium-ion batteries (LIBs), their polarization contributions and characteristic time constants. Direct measurement of a spectrum by means of electrochemical impedance spectroscopy (EIS), however, suffers from a high expenditure of time for low-frequency impedances and a lack of general availability in most online applications. In this study, a method is presented to derive the DRT by evaluating the relaxation voltage after a current pulse. The method was experimentally validated using both EIS and the proposed pulse evaluation to determine the DRT of automotive pouch-cells and an aging study was carried out. The DRT derived from time domain data provided improved resolution of processes with large time constants and therefore enabled changes in low-frequency impedance and the correlated degradation mechanisms to be identified. One of the polarization contributions identified could be determined as an indicator for the potential risk of plating. The novel, general approach for batteries was tested with a sampling rate of 10 Hz and only requires relaxation periods. Therefore, the method is applicable in battery management systems and contributes to improving the reliability and safety of LIBs.


2021 ◽  
Vol 23 (39) ◽  
pp. 22241-22245
Author(s):  
Zihui Song ◽  
Xudong Liu ◽  
Anish Ochani ◽  
Suling Shen ◽  
Qiqi Li ◽  
...  

In this report, the strong-dependence of low-frequency (terahertz) vibrational dynamics on weak and long-range forces in crystals is leveraged to determine the bulk magnetic configuration of iron phosphate – a promising material for cathodes in lithium ion batteries.


2020 ◽  
Vol 10 (3) ◽  
pp. 1021
Author(s):  
Yonglei Zheng ◽  
Yikai Li ◽  
He Wang ◽  
Siheng Chen ◽  
Xiangxin Guo ◽  
...  

We report a novel method to fabricate lithium-ion batteries cathodes with the NH4F pretreatment. In this study, NH4F-pretreated Li1.25Ni0.20Fe0.13Co0.33Mn0.33O2 hollow nano-micro hierarchical microspheres were synthesized for use as cathode materials. The X-ray diffraction patterns of NH4F-pretreated Li1.25Ni0.20Co0.33Fe0.13Mn0.33O2 were analyzed with the RIETAN-FP software program, and the results showed that the samples possess a layered α-NaFeO2 structure. The effects of pretreatment with NH4F on the electrochemical performance of the pristine material were evaluated through charge/discharge cycling, the rate performance, and electrochemical impedance spectroscopy (EIS). Pretreatment with NH4F significantly improved the discharge capacities and coulombic efficiencies of Li1.25Ni0.20Co0.33Fe0.13Mn0.33O2 in the first cycle and during subsequent electrochemical cycling. The sample pretreated with an appropriate amount of NH4F (NFCM 90) showed the highest discharge capacity (209.1 mA h g−1) and capacity retention (85.2% for 50 cycles at 0.1 C). The EIS results showed that the resistance of the NFCM 90 sample (76.32 Ω) is lower than that of the pristine one (206.2 Ω).


2020 ◽  
Vol 10 (21) ◽  
pp. 7836
Author(s):  
Cher Ming Tan ◽  
Preetpal Singh ◽  
Che Chen

Inaccurate state-of-health (SoH) estimation of battery can lead to over-discharge as the actual depth of discharge will be deeper, or a more-than-necessary number of charges as the calculated SoC will be underestimated, depending on whether the inaccuracy in the maximum stored charge is over or under estimated. Both can lead to increased degradation of a battery. Inaccurate SoH can also lead to the continuous use of battery below 80% actual SoH that could lead to catastrophic failures. Therefore, an accurate and rapid on-line SoH estimation method for lithium ion batteries, under different operating conditions such as varying ambient temperatures and discharge rates, is important. This work develops a method for this purpose, and the method combines the electrochemistry-based electrical model and semi-empirical capacity fading model on a discharge curve of a lithium-ion battery for the estimation of its maximum stored charge capacity, and thus its state of health. The method developed produces a close form that relates SoH with the number of charge-discharge cycles as well as operating temperatures and currents, and its inverse application allows us to estimate the remaining useful life of lithium ion batteries (LiB) for a given SoH threshold level. The estimation time is less than 5 s as the combined model is a closed-form model, and hence it is suitable for real time and on-line applications.


2020 ◽  
Vol 10 (19) ◽  
pp. 6637
Author(s):  
Xiaohong Wang ◽  
Wenhui Fan ◽  
Shixiang Li ◽  
Xinjun Li ◽  
Lizhi Wang

Accompanied by the development of new energy resources, lithium-ion batteries have been used widely in various fields. Due to the significant influence of system performance, much attention has been paid to the accurate estimation and prediction about health status of lithium-ion batteries. In a battery pack, the structure connection causes sophisticated interaction between cells, or between the cells and the pack. Therefore, the degradation of any cell is the result of the deterioration of conjoint cells, and a rapid degradation speed for any individual cell can lead to the accelerated degradation of others beyond expectation, which is one of the primary reasons why the State of Health and life cannot be calculated precisely. To solve this problem, a novel method based on integrated state information from cells has been proposed to estimate status of packs, considering about the degradation effect that cells contribute to the corresponding pack. Using this method, the interactive relationship was described in the form of a neural network in order to mine the effect from the inter-degradation between cells. It was proven that the novel method had better performance than a method based only on the degradation indicators from battery packs.


2013 ◽  
Vol 242 ◽  
pp. 548-559 ◽  
Author(s):  
Wladislaw Waag ◽  
Christian Fleischer ◽  
Dirk Uwe Sauer

Sign in / Sign up

Export Citation Format

Share Document