Selective Vulnerability of The Brain To Genetic Mutations And Unique Spatiotemporal Activities of Genes Are Associated with Intellectual Disability, Autism And Schizophrenia

2017 ◽  
Vol 27 ◽  
pp. S428 ◽  
Author(s):  
Shahar Shohat ◽  
Eyal Ben-David ◽  
Sagiv Shifman
2021 ◽  
Vol 7 (13) ◽  
pp. eabf3072
Author(s):  
Y. Nagayoshi ◽  
T. Chujo ◽  
S. Hirata ◽  
H. Nakatsuka ◽  
C.-W. Chen ◽  
...  

FtsJ RNA 2′-O-methyltransferase 1 (FTSJ1) gene has been implicated in X-linked intellectual disability (XLID), but the molecular pathogenesis is unknown. We show that Ftsj1 is responsible for 2′-O-methylation of 11 species of cytosolic transfer RNAs (tRNAs) at the anticodon region, and these modifications are abolished in Ftsj1 knockout (KO) mice and XLID patient–derived cells. Loss of 2′-O-methylation in Ftsj1 KO mouse selectively reduced the steady-state level of tRNAPhe in the brain, resulting in a slow decoding at Phe codons. Ribosome profiling showed that translation efficiency is significantly reduced in a subset of genes that need to be efficiently translated to support synaptic organization and functions. Ftsj1 KO mice display immature synaptic morphology and aberrant synaptic plasticity, which are associated with anxiety-like and memory deficits. The data illuminate a fundamental role of tRNA modification in the brain through regulation of translation efficiency and provide mechanistic insights into FTSJ1-related XLID.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Angela M. Crist ◽  
Kelly M. Hinkle ◽  
Xue Wang ◽  
Christina M. Moloney ◽  
Billie J. Matchett ◽  
...  

AbstractSelective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer’s disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Callison E Alcott ◽  
Hari Krishna Yalamanchili ◽  
Ping Ji ◽  
Meike E van der Heijden ◽  
Alexander Saltzman ◽  
...  

We previously showed that NUDT21-spanning copy-number variations (CNVs) are associated with intellectual disability (Gennarino et al., 2015). However, the patients’ CNVs also included other genes. To determine if reduced NUDT21 function alone can cause disease, we generated Nudt21+/- mice to mimic NUDT21-deletion patients. We found that although these mice have 50% reduced Nudt21 mRNA, they only have 30% less of its cognate protein, CFIm25. Despite this partial protein-level compensation, the Nudt21+/- mice have learning deficits, cortical hyperexcitability, and misregulated alternative polyadenylation (APA) in their hippocampi. Further, to determine the mediators driving neural dysfunction in humans, we partially inhibited NUDT21 in human stem cell-derived neurons to reduce CFIm25 by 30%. This induced APA and protein level misregulation in hundreds of genes, a number of which cause intellectual disability when mutated. Altogether, these results show that disruption of NUDT21-regulated APA events in the brain can cause intellectual disability.


2018 ◽  
Vol 5 ◽  
pp. 2329048X1879108 ◽  
Author(s):  
Hugh J. McMillan ◽  
Anne-Lise Holahan ◽  
Julie Richer

Worster-Drought syndrome is a congenital, pseudobulbar paresis. There is no identified molecular etiology despite familial cases reported. The authors report a boy who was diagnosed with Worster-Drought syndrome due to longstanding drooling, dysphagia, and impaired tongue movement. Magnetic resonance imaging of the brain was unrevealing. At 14 years old, he remains aphonic with normal facial and extraocular movements. Nonsense mutations in the LINS gene, p.Glu366X and p.Lys393X, were found. Results from neuropsychological testing at 14 years old were consistent with a diagnosis of intellectual disability and revealed nonverbal reasoning skills at a 5-year-old level with relative sparing of his receptive vocabulary and visual attention. Compared to prior testing at 9 years old, his receptive language improved from a 6-year-old to an 8.5-year-old level. The authors report LINS mutations associated with Worster-Drought syndrome. This highlights that despite severe and persistent aphonia, receptive language improvements can be observed within the context of intellectual disability.


2019 ◽  
Vol 20 (12) ◽  
pp. 2982 ◽  
Author(s):  
Gil Yong Park ◽  
Angelo Jamerlan ◽  
Kyu Hwan Shim ◽  
Seong Soo A. An

Transthyretin (TTR) is a thyroid hormone-binding protein which transports thyroxine from the bloodstream to the brain. The structural stability of TTR in tetrameric form is crucial for maintaining its original functions in blood or cerebrospinal fluid (CSF). The altered structure of TTR due to genetic mutations or its deposits due to aggregation could cause several deadly diseases such as cardiomyopathy and neuropathy in autonomic, motor, and sensory systems. The early diagnoses for hereditary amyloid TTR with cardiomyopathy (ATTR-CM) and wild-type amyloid TTR (ATTRwt) amyloidosis, which result from amyloid TTR (ATTR) deposition, are difficult to distinguish due to the close similarities of symptoms. Thus, many researchers investigated the role of ATTR as a biomarker, especially its potential for differential diagnosis due to its varying pathogenic involvement in hereditary ATTR-CM and ATTRwt amyloidosis. As a result, the detection of ATTR became valuable in the diagnosis and determination of the best course of treatment for ATTR amyloidoses. Assessing the extent of ATTR deposition and genetic analysis could help in determining disease progression, and thus survival rate could be improved following the determination of the appropriate course of treatment for the patient. Here, the perspectives of ATTR in various diseases were presented.


2017 ◽  
Author(s):  
Bo Am Seo ◽  
Taesup Cho ◽  
Daniel Z. Lee ◽  
Hwa Young Lee ◽  
Joong-Jae Lee ◽  
...  

AbstractDynamic trafficking of AMPA-type glutamate receptor (AMPA-R) in neuronal cells is a key cellular mechanism for learning and memory in the brain, which is regulated by AMPA-R interacting proteins. LARGE, a protein associated with intellectual disability, was found to be a novel component of the AMPA-R protein complex in our proteomic study. Here, our functional study of LARGE showed that during homeostatic scaling-down, increased LARGE expression at the Golgi apparatus (Golgi) negatively controlled AMPA-R trafficking from the Golgi to the plasma membrane, leading to downregulated surface and synaptic AMPA-R targeting. In LARGE knockdown mice, long-term potentiation (LTP) was occluded by synaptic AMPA-R overloading, resulting in impaired long-term memory formation. These findings indicate that the fine-tuning of AMPA-R trafficking by LARGE at the Golgi is critical for memory stability in the brain. Our study thus provides novel insights into the pathophysiology of brain disorders associated with intellectual disability.


BIOspektrum ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 588-590
Author(s):  
Zeeshan Mushtaq ◽  
Jan Pielage

AbstractThe precise regulation of synaptic connectivity is essential for the processing of information in the brain. Any aberrant loss of synaptic connectivity due to genetic mutations will disrupt information flow in the nervous system and may represent the underlying cause of psychiatric or neurodegenerative diseases. Therefore, identification of the molecular mechanisms controlling synaptic plasticity and maintenance is essential for our understanding of neuronal circuits in development and disease.


2020 ◽  
Author(s):  
L. Bonetti ◽  
N.A. Sedghi ◽  
S.E.P. Bruzzone ◽  
N.T. Haumann ◽  
T. Paunio ◽  
...  

AbstractPredicting events in the ever-changing environment is a fundamental survival function intrinsic to the physiology of sensory systems, whose efficiency varies among the population. Even though it is established that a major source of such variations is genetic heritage, there are no studies tracking down auditory predicting processes to genetic mutations. Thus, we examined the neurophysiological responses to deviant stimuli recorded with magnetoencephalography (MEG) in 108 healthy participants carrying different variants of the Val158Met single-nucleotide polymorphism (SNP) within the catechol-O-methyltransferase (COMT) gene, which is responsible for the majority of catecholamines degradation in the prefrontal cortex. Our results showed significant amplitude enhancement of neural responses localized within inferior frontal gyrus, superior and middle temporal cortices to deviant auditory stimuli in heterozygote genotype carriers (Val/Met) vs homozygote (Val/Val and Met/Met) carriers. Integrating neurophysiology and genetics, this study provided new and broader insights into the brain mechanisms underlying optimal deviant detection.


Sign in / Sign up

Export Citation Format

Share Document