scholarly journals Corrigendum to “Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-β1–40 administration in mice: Evidence for dissociation between cognitive deficits and neuronal damage”: [Experimental Neurology, 226:2 (2010) 274–284]

2021 ◽  
pp. 113840
Author(s):  
Tetsadê C.B. Piermartiri ◽  
Cláudia P. Figueiredo ◽  
Daniel Rial ◽  
Filipe S. Duarte ◽  
Sarah C. Bezerra ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 100
Author(s):  
Hyun Joo Shin ◽  
Eun Ae Jeong ◽  
Jong Youl Lee ◽  
Hyeong Seok An ◽  
Hye Min Jang ◽  
...  

The hippocampal cell death that follows kainic acid (KA)-induced seizures is associated with blood–brain barrier (BBB) leakage and oxidative stress. Lipocalin-2 (LCN2) is an iron-trafficking protein which contributes to both oxidative stress and inflammation. However, LCN2′s role in KA-induced hippocampal cell death is not clear. Here, we examine the effect of blocking LCN2 genetically on neuroinflammation and oxidative stress in KA-induced neuronal death. LCN2 deficiency reduced neuronal cell death and BBB leakage in the KA-treated hippocampus. In addition to LCN2 upregulation in the KA-treated hippocampus, circulating LCN2 levels were significantly increased in KA-treated wild-type (WT) mice. In LCN2 knockout mice, we found that the expressions of neutrophil markers myeloperoxidase and neutrophil elastase were decreased compared to their expressions in WT mice following KA treatment. Furthermore, LCN2 deficiency also attenuated KA-induced iron overload and oxidative stress in the hippocampus. These findings indicate that LCN2 may play an important role in iron-related oxidative stress and neuroinflammation in KA-induced hippocampal cell death.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


2016 ◽  
Vol 6 (1) ◽  
pp. e1258505 ◽  
Author(s):  
Irena Moserova ◽  
Iva Truxova ◽  
Abhishek D. Garg ◽  
Jakub Tomala ◽  
Patrizia Agostinis ◽  
...  

2014 ◽  
Vol 1843 (9) ◽  
pp. 2089-2099 ◽  
Author(s):  
Mira Polajnar ◽  
Tina Zavašnik-Bergant ◽  
Nataša Kopitar-Jerala ◽  
Magda Tušek-Žnidarič ◽  
Eva Žerovnik

Sign in / Sign up

Export Citation Format

Share Document