scholarly journals Morinda Citrifolia (Noni) and Low Dose Aspirin Prevent Apoptotic Cell Death and Oxidative Stress on Isoproterenol Induced Myocardial Infarction in Rats

2017 ◽  
Vol 39 (4) ◽  
pp. 165-170 ◽  
Author(s):  
Kevser Kusat Ol ◽  
Gungor Kanbak ◽  
Aysegul Oglakci Ilhan ◽  
Kazim Kartkaya ◽  
Mine Erden Inal
Biomaterials ◽  
2011 ◽  
Vol 32 (23) ◽  
pp. 5438-5458 ◽  
Author(s):  
Solaleh Khoramian Tusi ◽  
Leila Khalaj ◽  
Ghorbangol Ashabi ◽  
Mahmoud Kiaei ◽  
Fariba Khodagholi

1999 ◽  
Vol 112 (3) ◽  
pp. 290-296 ◽  
Author(s):  
Isabelle Viard ◽  
Philippe Wehrli ◽  
Lan Jornot ◽  
Roberto Bullani ◽  
Jean-Luc Vechietti ◽  
...  

2008 ◽  
Vol 294 (4) ◽  
pp. H1562-H1570 ◽  
Author(s):  
Hélène Bulckaen ◽  
Gaétan Prévost ◽  
Eric Boulanger ◽  
Géraldine Robitaille ◽  
Valérie Roquet ◽  
...  

The age-related impairment of endothelium-dependent vasodilatation contributes to increased cardiovascular risk in the elderly. For primary and secondary prevention, aspirin can reduce the incidence of cardiovascular events in this patient population. The present work evaluated the effect of low-dose aspirin on age-related endothelial dysfunction in C57B/J6 aging mice and investigated its protective antioxidative effect. Age-related endothelial dysfunction was assessed by the response to acetylcholine of phenylephrine-induced precontracted aortic segments isolated from 12-, 36-, 60-, and 84-wk-old mice. The effect of low-dose aspirin was examined in mice presenting a decrease in endothelial-dependent relaxation (EDR). The effects of age and aspirin treatment on structural changes were determined in mouse aortic sections. The effect of aspirin on the oxidative stress markers malondialdehyde and 8-hydroxy-2′-deoxyguanosine (8-OhdG) was also quantified. Compared with that of 12-wk-old mice, the EDR was significantly reduced in 60- and 84-wk-old mice ( P < 0.05); 68-wk-old mice treated with aspirin displayed a higher EDR compared with control mice of the same age (83.9 ± 4 vs. 66.3 ± 5%; P < 0.05). Aspirin treatment decreased 8-OHdG levels ( P < 0.05), but no significant effect on intima/media thickness ratio was observed. The protective effect of aspirin was not observed when treatment was initiated in older mice (96 wk of age). It was found that low-dose aspirin is able to prevent age-related endothelial dysfunction in aging mice. However, the absence of this effect in the older age groups demonstrates that treatment should be initiated early on. The underlying mechanism may involve the protective effect of aspirin against oxidative stress.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tong Zhao ◽  
Tihua Zheng ◽  
Huining Yu ◽  
Bo Hua Hu ◽  
Bing Hu ◽  
...  

AbstractMacroautophagy/autophagy is a highly conserved self-digestion pathway that plays an important role in cytoprotection under stress conditions. Autophagy is involved in hepatotoxicity induced by acetaminophen (APAP) in experimental animals and in humans. APAP also causes ototoxicity. However, the role of autophagy in APAP-induced auditory hair cell damage is unclear. In the present study, we investigated autophagy mechanisms during APAP-induced cell death in a mouse auditory cell line (HEI-OC1) and mouse cochlear explant culture. We found that the expression of LC3-II protein and autophagic structures was increased in APAP-treated HEI-OC1 cells; however, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence, and the activity of lysosomal enzymes decreased in APAP-treated HEI-OC1 cells. The degradation of p62 protein and the expression of lysosomal enzymes also decreased in APAP-treated mouse cochlear explants. These data indicate that APAP treatment compromises autophagic degradation and causes lysosomal dysfunction. We suggest that lysosomal dysfunction may be directly responsible for APAP-induced autophagy impairment. Treatment with antioxidant N-acetylcysteine (NAC) partially alleviated APAP-induced autophagy impairment and apoptotic cell death, suggesting the involvement of oxidative stress in APAP-induced autophagy impairment. Inhibition of autophagy by knocking down of Atg5 and Atg7 aggravated APAP-induced ER and oxidative stress and increased apoptotic cell death. This study provides a better understanding of the mechanism responsible for APAP ototoxicity, which is important for future exploration of treatment strategies for the prevention of hearing loss caused by ototoxic medications.


Sign in / Sign up

Export Citation Format

Share Document