In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress

2010 ◽  
Vol 48 (6) ◽  
pp. 1632-1637 ◽  
Author(s):  
Yanghee You ◽  
Soonam Yoo ◽  
Ho-Geun Yoon ◽  
Jeongjin Park ◽  
Yoo-Hyun Lee ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zhihong Lin ◽  
Danni Zhu ◽  
Yongqing Yan ◽  
Boyang Yu ◽  
Qiujuan Wang ◽  
...  

Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed ofPoria cocos(Chinese name:Fu Ling),Atractylodes macrocephala(Chinese name:Bai Zhu) andAngelica sinensis(Chinese names:Danggui, Dong quai, Donggui; Korean name:Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stressin vivoandin vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC5010.6%, ET501.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC502.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC503.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals.


2020 ◽  
Vol 33 (3) ◽  
pp. 168-175
Author(s):  
Lana YM. Juee ◽  
Alaadin M. Naqishbandi

AbstractTaraxacum officinale F.H. Wigg (Asteraceae) root is traditionally used to treat diabetes, dyspepsia, heartburn, anorexia and hepatitis. In this work, petroleum ether, chloroform, methanol and aqueous extracts of T. officinale root were evaluated for their antidiabetic activity in normoglycemic and alloxan-induced diabetic mice at two concentrations (200 and 400 mg/kg) using antidiabetic and subcutaneous glucose tolerance tests. Herein, in vitro glucose uptake assay was performed using HepG2 and 2-NDBG, while LC-MS/MS was employed for the phytochemical study of the main active constituents in the active extract. In the experiments, T. officinale root aqueous extract (400 mg/kg) showed a significant decrement in blood glucose level (62.33%, p ≤0.05), while other extracts (p >0.05) showed insignificant activity – in alloxan-induced diabetic mice with no apparent effect on the normoglycemic model. The extracts also showed an insignificant reduction in glucose levels (p >0.05) in the subcutaneous glucose tolerance test. However, a significant glucose uptake enhancement (149.6724%, p ≤0.05) was exhibited by the aqueous extract. Phytochemical study of the aqueous extract showed higher total phenolic than total flavonoid content, in which chlorogenic acid, protocatechuic acid, and luteolin-7-glucoside were identified.


Heliyon ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. e01749 ◽  
Author(s):  
K. Vinutha ◽  
Gollapalli Pavan ◽  
Sharath Pattar ◽  
N Suchetha Kumari ◽  
S.M. Vidya

2021 ◽  
Vol 12 ◽  
Author(s):  
Liying Xu ◽  
Feng Ge ◽  
Yan Hu ◽  
Ying Yu ◽  
Kefang Guo ◽  
...  

Preconditioning of sevoflurane (Sevo) has been demonstrated to protect the liver from ischemia/reperfusion (I/R) injury. However, it is unknown whether it has hepatoprotective when given at the onset of reperfusion (postconditioning), a protocol with more clinical impact. The present study aimed to explore the hepatoprotective effects of Sevo postconditioning against hepatic IR injury in vivo and in vitro and the possible mechanisms. Using a mouse model of hepatic I/R, Sevo postconditioning significantly improved hepatic injury after reperfusion, as demonstrated by reduced AST, ALT, and LDH serum levels and reduced histologic damage in liver tissues. Furthermore, Sevo postconditioning could suppress the apoptosis, inhibit oxidative stress and inflammatory response in liver tissue of HIRI mice, as well as improve the survival rate of HIRI mice. Through analyzing GSE72314 from the gene expression omnibus (GEO) database, it was demonstrated that microRNA (miR)-142 is downregulated by HIRI, which was reversed by Sevo treatment. Further investigation showed that agomiR-142 injection could enhance the hepatoprotective effects of Sevo postconditioning on I/R injury, while antagomiR-142 reversed these effects in mice. Notably, high mobility group box 1 (HMGB1), an important inflammatory factor, was directly targeted by miR-142 in hepatic cells, and we further found that Sevo could inhibit the expression of HMGB1 through up-regulating miR-142 expression in HIRI mice model. In addition, we found that I/R injury induced the activation of TLR4/NF-κB inflammatory pathway was partially suppressed by Sevo postconditioning, and miR-142 mediated the regulatory role of Sevo postconditioning. In line with the in vivo results, Sevo treatment improved the cell viability, inhibited cell apoptosis, oxidative stress and inflammatory response in vitro HIRI model, while these effects were reversed by antagomiR-142 transfection. Collectively, our findings demonstrated that Sevo postconditioning counteracts the downregulation of miR-142 provoked by I/R, in turn decreased the expression of HMGB1, blocking TLR4/NF-κB pathway activation, thus improving hepatic I/R injury. Our data suggest that Sevo may be a valuable alternative anaesthetic agent in liver transplantation and major liver surgeries.


2021 ◽  
Vol 12 (7) ◽  
pp. 3132-3141
Author(s):  
Hongkang Zhu ◽  
Wenqian Xu ◽  
Ning Wang ◽  
Wenhao Jiang ◽  
Yuliang Cheng ◽  
...  

We investigated the role of Maca aqueous extract on muscle during exercise-induced fatigue both in vivo and in vitro..


2020 ◽  
Vol 4 (1) ◽  
pp. 47-51
Author(s):  
Eteme Enama S ◽  
Messi A N ◽  
Mahob R J ◽  
Siama A ◽  
Njan Nloga A M
Keyword(s):  

2009 ◽  
Vol 38 (2) ◽  
pp. 154-159 ◽  
Author(s):  
Yang-Hee You ◽  
Kuk-Yung Jung ◽  
Yoo-Hyun Lee ◽  
Woo-Jin Jun ◽  
Boo-Yong Lee

2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


Sign in / Sign up

Export Citation Format

Share Document