Differential protective effects of extra virgin olive oil and corn oil in liver injury: A proteomic study

2014 ◽  
Vol 74 ◽  
pp. 131-138 ◽  
Author(s):  
Hualin Wang ◽  
Wat-Hung Sit ◽  
George Lim Tipoe ◽  
Jennifer Man-Fan Wan
2014 ◽  
Vol 25 (12) ◽  
pp. 1275-1281 ◽  
Author(s):  
María Ángeles Rosillo ◽  
María José Alcaraz ◽  
Marina Sánchez-Hidalgo ◽  
José G. Fernández-Bolaños ◽  
Catalina Alarcón-de-la-Lastra ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 35-44
Author(s):  
Nuraznee Mashodi ◽  
Nurul Yani Rahim ◽  
Norhayati Muhammad ◽  
Saliza Asman

Extra virgin olive oil (EVOO) is categorized as expensive oil due to high-quality nutritional value. Unfortunately, EVOO is easily adulterated with other low-quality edible oils. Therefore, this study was done to differentiate and analyze the adulteration of EVOO with other edible oils using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The study was used several edible oils included canola oil, corn oil, sunflower oil, and soybean oil as an adulterant for EVOO. The adulterant EVOO samples were prepared by mixing with dissimilar concentrations of the solely edible oils (20 %, 40 %, 60 % and 80 % (v/v)). The main functional groups of EVOO and other edible oils are O-H, C-H, C=C and C=O groups were assigned around 3500 cm-1, 2925 cm-1, 3006 cm-1 and 1745 cm-1 wavenumbers, respectively. From the comparison of EVOO and other adulterant edibles oil spectra, it showed that the EVOO has the lowest absorbance intensity at around 3006 cm-1 represented double bond which is closely related to the composition of oil sample. The adulteration of EVOO was evaluated by analysing the changes in the absorbance based on the linear regression analysis graph of the bands at 3006 and 2925 cm-1 and the limit of detection (LOD) was measured. The graph of A3008/A2925 with good relative coefficients (R2) and lower LOD is more favourable than the linear regression graph of A3006 versus percentage of edible oils added in EVOO. This study showed that ATR-FTIR spectroscopy is a convenient tool for analysing the adulteration of EVOO.


2019 ◽  
Vol 9 (12) ◽  
pp. 2433 ◽  
Author(s):  
Shiyamala Duraipandian ◽  
Jan C. Petersen ◽  
Mikael Lassen

Adulteration of extra virgin olive oil (EVOO) with cheaper edible oils is of considerable concern in the olive oil industry. The potential of Raman spectroscopy combined with multivariate statistics has been investigated for evaluating the authenticity (or purity) and concentration of EVOO irrespective of it being adulterated with one or more adulterants. The adulterated oil samples were prepared by blending different concentrations of EVOO (10–100% v/v) randomly with cheaper edible oils such as corn, soybean and rapeseed oil. As a result, a Raman spectral database of oil samples (n = 214 spectra) was obtained from 11 binary mixtures (EVOO and rapeseed oil), 16 ternary mixtures (EVOO, rapeseed and corn oil) and 44 quaternary mixtures (EVOO, rapeseed, corn and soybean oil). Partial least squares (PLS) calibration models with 10-fold cross validation were constructed for binary, ternary and quaternary oil mixtures to determine the purity of spiked EVOO. The PLS model on the complex dataset (binary + ternary + quaternary) where the spectra obtained with different measurement parameters and sample conditions can able to determine the purity of spiked EVOO inspite of being blended with one or more cheaper oils. As a proof of concept, in this study, we used single batch of commercial oil bottles for estimating the purity of EVOO. The developed method is not only limited to EVOO, but can be applied to clean EVOO obtained from the production site and other types of food.


Author(s):  
Rosa Casas ◽  
Ramon Estruch ◽  
Emilio Sacanella

Background and Objective: The increasing interest in the Mediterranean diet (MeDiet) hinges on the relevant role it plays in inflammatory diseases. Several clinical, epidemiological and experimental evidences suggest that consumption of the MeDiet reduces the incidence of certain pathologies related to oxidative stress, chronic inflammation and immune system diseases such as cancer, atherosclerosis and cardiovascular disease (CVD). These reductions can be partially attributed to extra virgin olive oil (EVOO) consumption which has been described as a key bioactive food because of its high nutritional quality and its particular composition of fatty acids, vitamins and polyphenols. Indeed, the beneficial effects of EVOO have been linked to its fatty acid composition, which is very rich in monounsaturated fatty acids (MUFA), and has moderate saturated and polyunsaturated fatty acids (PUFA). The current knowledge available on the beneficial effects of EVOO and its phenolic compounds, specifically its biological properties and antioxidant capacity against immune-mediated inflammatory responses (atherosclerosis, rheumatoid arthritis, diabetes, obesity, cancer, inflammatory bowel disease or neurodegenerative disease, among others) in addition to its potential clinical applications. Conclusion: The increasing body of studies carried out provides compelling evidence that olive polyphenols are potential candidates to combat chronic inflammatory states.


2020 ◽  
Vol 4 ◽  
pp. 239784732092293
Author(s):  
Eunice D. Farfán-García ◽  
Antonio Abad-García ◽  
Alberto Alatorre ◽  
Teresa Pérez-Capistran ◽  
Enrique Querejeta ◽  
...  

Some vegetable oils show beneficial effects in modulating neurodegeneration; in this work, we evaluated the therapeutic potential of corn and olive oils against neurodegenerative processes using the acute parkinsonism murine model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL6 mice. The effects of corn and olive oils were quantified by the performance of mice in the open field and rotarod, and grasp strength tests and neuronal survival in the substantia nigra and striatum were determined by immunohistochemistry. Extra-virgin olive oil decreased the toxicity induced by MPTP administration judged by the performance in the behavioral motor tests and the number of total neurons in the analyzed brain regions. In contrast, corn oil only produced discrete changes in the behavioral and histological evaluations. Despite the numerous benefits of olive oil, its active substances that confer desirable effects and their mechanism of action remain unclear. Our observations can help to understand the ameliorative effects of some natural oils on neurodegeneration induced by some toxins, particularly the attenuation of neural damage related to toxin-induced parkinsonism or other pathologies that comprise neuronal death and motor disruption.


Sign in / Sign up

Export Citation Format

Share Document