scholarly journals Assessment of in vitro kinetics and biological impact of nebulized trehalose on human bronchial epithelium

2021 ◽  
pp. 112577
Author(s):  
Anita R. Iskandar ◽  
Aditya Reddy Kolli ◽  
Albert Giralt ◽  
Laurent Neau ◽  
Maria Fatarova ◽  
...  
1989 ◽  
Vol 102 (2-3) ◽  
pp. 268-272 ◽  
Author(s):  
P. Leprince ◽  
J.-M. Rigo ◽  
P.P. Lefebvre ◽  
B. Rogister ◽  
P. Delrée ◽  
...  

1996 ◽  
Vol 5 (3) ◽  
pp. 210-217
Author(s):  
M. M. Verheggen ◽  
H. I. M. de Bont ◽  
P. W. C. Adriaansen-Soeting ◽  
B. J. A. Goense ◽  
C. J. A. M. Tak ◽  
...  

In this study, we investigated the expression of lipocortin I and II (annexin I and I in the human bronchial epithelium, bothin vivoandin vitro. A clear expression of lipocortin I and II protein was found in the epithelium in sections of bronchial tissue. In cultured human bronchial epithelial cells we demonstrated the expression of lipocortin I and II mRNA and protein using Northern blotting, FACScan analysis and ELISA. No induction of lipocortin I or II mRNA or protein was observed after incubation with dexamethasone. Stimulation of bronchial epithelial cells with IL-1β, TNF-α or LPS for 24 h did not affect the lipocortin I or II mRNA or protein expression, although PGE2and 6-keto-PGF1αproduction was significantly increased. This IL-1β- and LPS-mediated increase in eicosanoids could be reduced by dexamethasone, but was not accompanied by an increase in lipocortin I or II expression. In human bronchial epithelial cells this particular glucocorticoid action is not mediated through lipocortin I or II induction.


2020 ◽  
Author(s):  
Engi Ahmed ◽  
Mathieu Fieldes ◽  
Chloé Bourguignon ◽  
Joffrey Mianné ◽  
Aurélie Petit ◽  
...  

AbstractRationaleHighly reproducible in vitro generation of human bronchial epithelium from pluripotent stem cells is an unmet key goal for drug screening to treat lung diseases. The possibility of using induced pluripotent stem cells (hiPSC) to model normal and diseased tissue in vitro from a simple blood sample will reshape drug discovery for chronic lung, monogenic and infectious diseases.MethodsWe devised a simple and reliable method that drives a blood sample reprogrammed into hiPSC subsequently differentiated within 45 days into air-liquid interface bronchial epithelium (iALI), through key developmental stages, definitive-endoderm (DE) and Ventralized-Anterior-Foregut-Endoderm (vAFE) cells.ResultsReprogramming blood cells from one healthy and 3 COPD patients, and from skin-derived fibroblasts obtained in one PCD patient, succeeded in 100% of samples using Sendai viruses. Mean cell purity at DE and vAFE stages was greater than 80%, assessed by expression of CXCR4 and NKX2.1, avoiding the need of cell sorting. When transferred to ALI conditions, vAFE cells reliably differentiated within 4 weeks into bronchial epithelium with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells as found in vivo. Benchmarking all culture conditions including hiPSCs adaptation to single-cell passaging, cell density and differentiation induction timing allowed for consistently producing iALI bronchial epithelium from the five hiPSC lines.ConclusionsReliable reprogramming and differentiation of blood-derived hiPSCs into mature and functional iALI bronchial epithelium is ready for wider use and this will allow better understanding lung disease pathogenesis and accelerating the development of novel gene therapies and drug discovery.


1993 ◽  
Vol 67 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Alan L. Mendrala ◽  
Patrick W. Langvardt ◽  
Kenneth D. Nitschke ◽  
John F. Quast ◽  
Richard J. Nolan

1990 ◽  
Vol 4 (4-5) ◽  
pp. 646-653 ◽  
Author(s):  
B.F. Trump ◽  
I.K. Berezesky ◽  
M.W. Smith ◽  
R.T. Jones ◽  
P.C. Phelps ◽  
...  
Keyword(s):  

Development ◽  
1983 ◽  
Vol 74 (1) ◽  
pp. 183-206
Author(s):  
Kirstie A. Lawson

Epithelia from lung rudiments in which secondary bronchial buds are already established (14th and 13th gestational day for rat and mouse respectively) are able to undergo branching morphogenesis and cytodifferentiation in submandibular mesenchyme in vitro, whereas lung epithelium from one day younger foetuses rarely gives a morphogenetic response to submandibular mesenchyme and usually differentiates into primary (non-budding) bronchial epithelium. The failure of 13-day rat lung epithelium to respond to submandibular mesenchyme can be prevented by peeling off the submandibular mesenchyme from the lung epithelium after 2½ days culture and replacing the same mesenchyme, or renewing it with fresh salivary mesenchyme ex vivo. Changes in the epithelial contour are visible by 10 h and buds form within 24 h; this is followed by branching morphogenesis in more than 66% of the samples. The number of cells in S-phase in the epithelium is doubled within 3 to 5 h after the operation and the number of mitotic cells (colchicine block) is increased during an 11 to 19 h period after the operation. Substituting stomach mesenchyme for submandibular mesenchyme after the operation failed to elicit morphogenesis or an increase in the number of S-phase cells in the epithelium. The proportion of epithelial cells in S-phase in unoperated recombinates does not differ from the proportion in the primary bronchial epithelium (non-budding) of homotypic lung recombinates, whereas the proportion of S-phase cells in operated recombinates approaches that found in the buds of homotypic lung recombinates. The distribution of S-phase cells in visibly responding recombinates 15 to 17 h after operation shows the same heterogeneity as in homotypic lung recombinates, newly formed buds having twice as many cells labelled with [3H]thymidine as the non-budding area. Cell cycle parameters of intact rat lung growing in vitro were estimated using the labelled mitoses method. Primary bronchial epithelium and bronchial buds both had a total cell cycle time of about 13 h and an S-phase of about 10 h. The growth fraction was 0·54 in the primary bronchus and 0·95 in the buds. It is suggested that, also in the recombinates, differences in the proportion of S-phase cells at any one time in morphogenetically active and inactive areas of the epithelium are due to differences in the growth fraction. It is concluded that an early event in the morphogenetic response of lung epithelium to submandibular mesenchyme after removing and restoring the mesenchyme is an increase in the size of the population of dividing cells and it is suggested that a high proportion of dividing cells in an epithelial population is a prerequisite for further interaction of epithelium and mesenchyme leading to branching morphogenesis.


2022 ◽  
pp. 2101634
Author(s):  
Jeanne-Marie Perotin ◽  
Gabrielle Wheway ◽  
Kamran Tariq ◽  
Adnan Azim ◽  
Robert A Ridley ◽  
...  

BackgroundSevere asthma is associated with multiple co-morbidities, including gastro-oesophageal reflux disease (GORD) which can contribute to exacerbation frequency and poor quality of life. Since epithelial dysfunction is an important feature in asthma, we hypothesised that in severe asthma the bronchial epithelium is more susceptible to the effects of acid reflux.MethodsWe developed an in vitro model of GORD using differentiated bronchial epithelial cells (BECs) from normal or severe asthmatic donors exposed to a combination of pepsin, acid pH, and bile acids using a multiple challenge protocol (MCP-PAB). We also analysed bronchial biopsies and undertook RNA-sequencing of bronchial brushings from controls and severe asthmatics without or with GORD.ResultsExposure of BECs to the MCP-PAB caused structural disruption, increased permeability, IL-33 expression, inflammatory mediator release and changes in gene expression for multiple biological processes. Cultures from severe asthmatics were significantly more affected than those from healthy donors. Analysis of bronchial biopsies confirmed increased IL-33 expression in severe asthmatics with GORD. RNA-sequencing of bronchial brushings from this group identified 15 of the top 37 dysregulated genes found in MCP-PAB treated BECs, including genes involved in oxidative stress responses.ConclusionsBy affecting epithelial permeability, GORD may increase exposure of the airway submucosa to allergens and pathogens, resulting in increased risk of inflammation and exacerbations. Clinical implication: These results suggest the need for research into alternative therapeutic management of GORD in severe asthma.


Sign in / Sign up

Export Citation Format

Share Document