Modeling of superelastic auxetic structures of Ti–Zr base alloy

2022 ◽  
Vol 201 ◽  
pp. 103705
Author(s):  
Ricardo D. Parga Montemayor ◽  
Luis A. Reyes Osorio ◽  
Luis Lopez-Pavon ◽  
Octavio Garcia-Salazar ◽  
Ivan E. Moreno-Cortez ◽  
...  
Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.


Author(s):  
J. M. Walsh ◽  
J. C. Whittles ◽  
B. H. Kear ◽  
E. M. Breinan

Conventionally cast γ’ precipitation hardened nickel-base superalloys possess well-defined dendritic structures and normally exhibit pronounced segregation. Splat quenched, or rapidly solidified alloys, on the other hand, show little or no evidence for phase decomposition and markedly reduced segregation. In what follows, it is shown that comparable results have been obtained in superalloys processed by the LASERGLAZE™ method.In laser glazing, a sharply focused laser beam is traversed across the material surface at a rate that induces surface localized melting, while avoiding significant surface vaporization. Under these conditions, computations of the average cooling rate can be made with confidence, since intimate contact between the melt and the self-substrate ensures that the heat transfer coefficient is reproducibly constant (h=∞ for perfect contact) in contrast to the variable h characteristic of splat quenching. Results of such computations for pure nickel are presented in Fig. 1, which shows that there is a maximum cooling rate for a given absorbed power density, corresponding to the limiting case in which melt depth approaches zero.


Author(s):  
L. S. Lin ◽  
C. C. Law

Inconel 718, a precipitation hardenable nickel-base alloy, is a versatile high strength, weldable wrought alloy that is used in the gas turbine industry for components operated at temperatures up to about 1300°F. The nominal chemical composition is 0.6A1-0.9Ti-19.OCr-18.0Fe-3Mo-5.2(Cb + Ta)- 0.1C with the balance Ni (in weight percentage). The physical metallurgy of IN 718 has been the subject of a number of investigations and it is now established that hardening is due, primarily, to the formation of metastable, disc-shaped γ" an ordered body-centered tetragonal structure (DO2 2 type superlattice).


1978 ◽  
Vol 27 (292) ◽  
pp. 99-103 ◽  
Author(s):  
Kiyoshi KITA ◽  
Masanori KIYOSHIGE ◽  
Masatake TOMINAGA ◽  
Junzo FUJIOKA

2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract INCONEL alloy 718SPF is an age-hardenable austenitic material whose strength is largely dependent on the precipitation of a gamma prime phase following heat treatment. The base alloy, however, possesses two-essential characteristics for super-plastic forming; grain size stability over time and temperature; and a combination of low flow stress and significant ductility. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on low and high temperature performance. Filing Code: Ni-471. Producer or source: Inco Alloys International Inc.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1993 ◽  
Vol 42 (7) ◽  

Abstract DELORO 716 PM is a nickel-base alloy recommended for handling conditions of wear, erosion, heat and corrosion when impact is also a consideration. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance and wear resistance as well as machining and joining. Filing Code: Ni-435. Producer or source: Deloro Stellite Inc.


Sign in / Sign up

Export Citation Format

Share Document