A consistent three-parameter cubic EOS for precise prediction of volumetric and saturation properties through wide-temperature-ranged adjusted critical compressibility factor

2021 ◽  
pp. 113330
Author(s):  
Ebrahim Khajehvandi ◽  
Mohammad Reza Khorsand Movaghar
1996 ◽  
Vol 34 (3-4) ◽  
pp. 533-540 ◽  
Author(s):  
A. Koenig ◽  
J. N. Kay ◽  
I. M. Wan

In the context of landfilling dewatered wastewater sludge in Hong Kong, with landfills up to 140 m high, one of the most significant properties of sludge is its physical nature with regard to moisture characteristics and associated geotechnical stability. Commonly, lower limits are set on total solids content, but no geotechnical stability criteria are applied with the exception of Germany where a minimum requirement for vane shear strength is set at 25 kN/m2. The purpose of this study was to determine and evaluate dewatered wastewater sludge from three Hong Kong municipal wastewater treatment plants with regard to the following physical and geotechnical properties: (i) vane shear strength; (ii) consolidation characteristics such as compression index, compressibility factor, coefficient of consolidation and compressibility coefficient; and (iii) hydraulic characteristics such as permeability and intrinsic resistance. Although dewatered sludge exhibits quite different characteristics as compared to soils, predictive logarithmic relationships may be established between various properties which are consistent with the critical state model for soils, conventional filtration and consolidation theory. Such representation provides a valuable basis for understanding the sludge characteristics and behaviour to landfill design.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahdi Akbarzadeh ◽  
Saeid Rasekhi Dehkordi ◽  
Mahmoud Amiri Roudbar ◽  
Mehdi Sargolzaei ◽  
Kamran Guity ◽  
...  

AbstractIn recent decades, ongoing GWAS findings discovered novel therapeutic modifications such as whole-genome risk prediction in particular. Here, we proposed a method based on integrating the traditional genomic best linear unbiased prediction (gBLUP) approach with GWAS information to boost genetic prediction accuracy and gene-based heritability estimation. This study was conducted in the framework of the Tehran Cardio-metabolic Genetic study (TCGS) containing 14,827 individuals and 649,932 SNP markers. Five SNP subsets were selected based on GWAS results: top 1%, 5%, 10%, 50% significant SNPs, and reported associated SNPs in previous studies. Furthermore, we randomly selected subsets as large as every five subsets. Prediction accuracy has been investigated on lipid profile traits with a tenfold and 10-repeat cross-validation algorithm by the gBLUP method. Our results revealed that genetic prediction based on selected subsets of SNPs obtained from the dataset outperformed the subsets from previously reported SNPs. Selected SNPs’ subsets acquired a more precise prediction than whole SNPs and much higher than randomly selected SNPs. Also, common SNPs with the most captured prediction accuracy in the selected sets caught the highest gene-based heritability. However, it is better to be mindful of the fact that a small number of SNPs obtained from GWAS results could capture a highly notable proportion of variance and prediction accuracy.


2021 ◽  
pp. 146808742199698
Author(s):  
Lyu Xiuyi ◽  
Abdullah Azam ◽  
Wang Yuechang ◽  
Lu Xiqun ◽  
Li Tongyang ◽  
...  

The piston ring-cylinder liner (PRCL) is one of the most important parts of marine diesel engines and contributes 25% to 50% of total friction loss. The lubrication simulation analysis of the PRCL system is a challenging task. Complete understanding and precise prediction of lubrication loads is a key to understanding the friction behavior of PRCL systems as the accuracy of the friction prediction depends upon precise prediction of lubrication loads. Therefore, this paper focuses on the gas pressure calculation which is the primary source of lubrication loads. The procedure presented combines the advantages of two mainstream methods to predict loads in the PRCL system. The result is a significant reduction in the computation time without compromising on accuracy. Firstly, a comparison of both approaches is presented which suggests that each technique has its limitations (one is time-bound, and one is accuracy-bound). Then, the results from both calculation methods are verified against literature and a parametric study is performed to identify the key structural parameters of PRCL system that affect the calculation efficiency. Finally, a correlation coefficient is introduced into the analysis to combine the two approaches which then identifies the conditions under which the use of the faster method becomes invalid and replaces it with the more accurate approach. This ensures optimum performance of the calculation procedure by switching between the fast and the accurate method depending upon the accuracy requirement under given conditions, thereby, simplifying the dynamic and lubrication model of PRCL systems. The study has direct implications for the tribological design of the PRCL interface.


Author(s):  
Biswajit Roy ◽  
Sudip Dey

The precise prediction of a rotor against instability is needed for avoiding the degradation or failure of the system’s performance due to the parametric variabilities of a bearing system. In general, the design of the journal bearing is framed based on the deterministic theoretical analysis. To map the precise prediction of hydrodynamic performance, it is needed to include the uncertain effect of input parameters on the output behavior of the journal bearing. This paper presents the uncertain hydrodynamic analysis of a two-axial-groove journal bearing including randomness in bearing oil viscosity and supply pressure. To simulate the uncertainty in the input parameters, the Monte Carlo simulation is carried out. A support vector machine is employed as a metamodel to increase the computational efficiency. Both individual and compound effects of uncertainties in the input parameters are studied to quantify their effect on the steady-state and dynamic characteristics of the bearing.


2014 ◽  
Vol 925 ◽  
pp. 641-645 ◽  
Author(s):  
Mohamed Salmi ◽  
Hassen Bouzgou ◽  
Yarub Al-Douri ◽  
Abdelhakim Boursas

We present three models for the estimation of hourly global solar radiation for two sites in Algeria, namely: Djelfa (Latitude 34.68°N, Longitude 3.25°E, Altitude 1126 (m)) and Ain Bessem (Latitude 36.31°N, Longitude 3.67°E, Altitude 629 (m)). The models are: the Gaussian distribution model, the model by Collares-Pereira-RabI and the H.A. model (Hourly absolute modelling approach). The experimental assessment was done using recorded values of the hourly global solar radiation on a horizontal plane during the period 2000-2004. The obtained results show a close similarity between the solar radiation values calculated by the three models and the measured values, especially for the first model. The experimental validation shows promising results for the estimation and precise prediction of the hourly global solar radiation.


Sign in / Sign up

Export Citation Format

Share Document