Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk

2015 ◽  
Vol 46 ◽  
pp. 40-45 ◽  
Author(s):  
Chedia Aouadhi ◽  
Slah Mejri ◽  
Abderrazak Maaroufi
1985 ◽  
Vol 48 (5) ◽  
pp. 421-428 ◽  
Author(s):  
M. K. WAGNER ◽  
F. F. BUSTA

Growth response from spores and vegetative cells of Clostridium botulinum strain 52A in peptone-yeast extract-glucose (PYEG) broth at two pH levels (5.55 or 5.85) containing sodium acid pyrophosphate (SAPP) (0, 0.2, 0.4%), NaCl (0, 1.25, 2.50%) and/or potassium sorbate (KS) (0, 0.13, 0.26%) was measured as the mean A630 nm of 20 tubes at 37°C. Additional treatments contained KC1 and MgCl2 (0, 1.25, 2.50%) without SAPP or KS. Growth ratios (GR = treatment/control) based on time to reach A630 = 0.35 were calculated to compare effects of additives on strain 52A. Growth from spores was affected significantly (p≤0.01) by pH level. KS and KS/pH interactions were also significant factors in growth from both spores and vegetative cells; SAPP/pH interactions were significant for cell growth, only. Combinations of SAPP (0.2, 0.4%) NaCl (0%) and KS (0.26%) were the most favorable treatments for delaying growth from spores or vegetative cells. NaCl (1.25, 2.50%) decreased antibotulinal effects produced by combinations of SAPP and KS. Elimination of NaCl enhanced antibotulinal effects. Formulations containing KC1 or MgCl2 (without SAPP and KS) at the same molarity as the NaCl in earlier treatments (0.21, 0.43) resulted in inhibition of growth from vegetative cells greater than growth from spores in the presence of MgCl2 at M = 0.43 (ionic strength = 1.29). This inhibition was more evident at pH 5.55 than pH 5.85. This study in a model system suggests ionic strength and/or chloride salt may be important considerations when manipulating formulations of additives designed to control C. botulinum growth.


1983 ◽  
Vol 46 (11) ◽  
pp. 940-942 ◽  
Author(s):  
LLOYD B. BULLERMAN

Growth and aflatoxin production by selected strains of Aspergillus parasiticus and Aspergillus flavus in the presence of potassium sorbate at 12°C were studied. Potassium sorbate at 0.05, 0.10 and 0.15% delayed or prevented spore germination and initiation of growth, and slowed growth of these organisms in yeast-extract sucrose broth at 12°C. Increasing concentrations of sorbate caused more variation in the amount of total mycelial growth and generally resulted in a decrease in total mycelial mass. Potassium sorbate also greatly reduced or prevented production of aflatoxin B1 by A. parasiticus and A. flavus for up to 70 d at 12°C. At 0.10 and 0.15% of sorbate, aflatoxin production was essentially eliminated. A 0.05% sorbate, aflatoxin production was greatly decreased in A. flavus over the control, but only slightly decreased in A. parasiticus.


1993 ◽  
Vol 56 (9) ◽  
pp. 795-800 ◽  
Author(s):  
BOBBY L. BOWLES ◽  
ARTHUR J. MILLER

Several aromatic and aliphatic ketones were tested for inhibitory activity against Clostridium botulinum spores and cells. Six-tenths mM 3-heptanone, 3-hexanone, or benzophenone delayed spore germination in botulinal assay medium (BAM) broth at 32°C. Sporicidal activity was observed for 1,250 mM 2,3-pentanedione, while 2-octanone, 3-octanone, or benzophenone were effective at 2,500 mM. In general, higher concentrations were required to inhibit vegetative cells than to prevent spore germination. Maximum activity against vegetative cells was observed at 25 mM acetanisole (4′-methoxyacetophenone), 2,3-butanedione, 2,3-pentanedione, 2-pentanone, or benzophenone, and inhibition was independent of pH. Five-tenths mM acetanisole inhibited dipicolinic acid release, 100 mM reduced 20 min 80°C thermal resistance, and 5.0 mM delayed toxigenesis in BAM broth at 32°C. Furthermore, inhibitory activity of acetanisole was comparable to that observed in BAM broth when tested in commercially prepared chicken and beef broths. The spectrum of antibotulinal activity was dependent upon carbon chain length, carbonyl position, number of carbonyls, and aromaticity. The inhibitions observed suggest that aliphatic and aromatic ketones might have potential as novel antimicrobial agents.


2012 ◽  
Vol 57 (1) ◽  
pp. 664-667 ◽  
Author(s):  
Charlotte A. Allen ◽  
Farah Babakhani ◽  
Pam Sears ◽  
Ly Nguyen ◽  
Joseph A. Sorg

ABSTRACTFidaxomicin (FDX) is approved to treatClostridium difficile-associated diarrhea and is superior to vancomycin in providing a sustained clinical response (cure without recurrence in the subsequent 25 days). The mechanism(s) behind the low recurrence rate of FDX-treated patients could be multifactorial. Here, we tested effects of FDX, its metabolite OP-1118, and vancomycin on spore germination and determined that none affected the initiation of spore germination but all inhibited outgrowth of vegetative cells from germinated spores.


1987 ◽  
Vol 33 (9) ◽  
pp. 773-776 ◽  
Author(s):  
S. E. Craven ◽  
L. C. Blankenship

The hydrophobic characteristics of Clostridium perfringens NCTC 8679 spores were demonstrated by adherence to toluene in a toluene–aqueous partition system. Spores and spore coat preparations were hydrophobic. Vegetative cells and spores extracted with a dithiothreitol – sodium dodecyl sulfate treatment known to remove spore coats were not hydrophobic. A heat activation treatment (75 °C for 20 min) which promotes more rapid spore germination increased the hydrophobicity of intact spores and decreased that of isolated spore coats. The hydrophobic changes were reversed by washing and stabilized by 0.5% glutaraldehyde. Heat-induced hydrophobic changes were observed in spore coats prepared from spores that were preheated and washed before rupturing in a buffer containing glutaraldehyde. These results suggest the occurrence of a heat-induced change in the spore coat (possibly in the conformation of a macromolecule) which was stable only within the architectural confines of the intact spore.


2019 ◽  
Author(s):  
Bhagyashree Swarge ◽  
Martijs Jonker ◽  
Wishwas Abhyankar ◽  
Huub Hoefsloot ◽  
Chris G. de Koster ◽  
...  

AbstractBacillus subtilisforms highly resistant, metabolically inactive dormant spores upon nutrient limitation. These endospores pose challenges to the food and medical sectors. Spores reactivate their metabolism upon contact with germinants and develop into vegetative cells. The activation of the molecular machinery that triggers the progress of germination and spore outgrowth is still unsettled. To gain further insight in spore germination and outgrowth processes, the transcriptome and proteome changeover during spore germination and outgrowth to vegetative cells, was analysed.B. subtilistranscriptome analysis allow us to trace the different functional groups of genes expressed. For each time-point sample, the change in the spore proteome was quantitatively monitored relative to the reference proteome of15N metabolically labelled vegetative cells. We observed until the phase transition, i.e. completion of germination, no significant change in the proteome. We have identified 36 transcripts present abundantly in the dormant spores. This number is in close agreement with the previous findings. These transcripts mainly belong to the genes encoding small acid soluble proteins (sspE, sspO, sspI, sspK, sspF) and proteins with uncharacterized functions. We observed in total 3152 differentially expressed genes, but ‘only’ 323 differentially expressed proteins (total 451 proteins identified and quantified). Our data shows that 173 proteins from dormant spores, both spore unique proteins and protein shared with vegetative cells, are lost during the phase transitioning period. This loss is in addition to the active protein degradation, undertaken by the spore proteases such as Gpr, as germination and outgrowth proceeds. Further analysis is required to functionally interpret the observed protein loss. The observed diverse timing of the synthesis of different protein sets reveals a putative core-strategy of the revival of ‘life’ starting from theB. subtilisspore.


2016 ◽  
Vol 65 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Christophe Le Lay ◽  
Larbi Dridi ◽  
Michel G. Bergeron ◽  
Marc Ouellette ◽  
Ismaı¨l Fliss

2005 ◽  
Vol 187 (10) ◽  
pp. 3593-3598 ◽  
Author(s):  
Yoshio Kimura ◽  
Mika Ohtani ◽  
Kaoru Takegawa

ABSTRACT We have previously reported that a receptor-type adenylyl cyclase (CyaA) of Myxococcus xanthus undergoes an osmosensor mainly during spore germination (Y. Kimura et al., J. Bacteriol. 184:3578-3585, 2002). In the present study, we cloned another receptor-type adenylyl cyclase gene (cyaB) and characterized the function of the cyaB-encoded protein. Disruption of cyaB generates a mutant that showed growth retardation at high ionic (NaCl) or high nonionic (sucrose) osmolarity. When vegetative cells were stimulated with 0.15 M NaCl, the increases in intracellular cyclic AMP levels of cyaB mutant cells were lower than those of wild-type cells. Under nonionic osmostress, the cyaB mutant exhibited reduced spore germination; however, the germination rate of the cyaB mutant was significantly higher than that of the cyaA mutant.


Sign in / Sign up

Export Citation Format

Share Document