scholarly journals Influence of hydrogen peroxide on the ROS metabolism and its relationship to pulp breakdown of fresh longan during storage

2021 ◽  
pp. 100159
Author(s):  
Yixiong Lin ◽  
Yifen Lin ◽  
Mengshi Lin ◽  
Zhongqi Fan ◽  
Hetong Lin
2020 ◽  
Vol 33 (2) ◽  
pp. 336-348 ◽  
Author(s):  
Davide Gerna ◽  
Thomas Roach ◽  
Birgit Mitter ◽  
Wolfgang Stöggl ◽  
Ilse Kranner

In endophytes, the abundance of genes coding for enzymes processing reactive oxygen species (ROS), including hydrogen peroxide (H2O2), argues for a crucial role of ROS metabolism in plant-microbe interaction for plant colonization. Here, we studied H2O2 metabolism of bread wheat (Triticum aestivum L.) seeds and their microbiota during germination and early seedling growth, the most vulnerable stages in the plant life cycle. Treatment with hot steam diminished the seed microbiota, and these seeds produced less extracellular H2O2 than untreated seeds. Using a culture-dependent approach, Pantoea and Pseudomonas genera were the most abundant epiphytes of dry untreated seeds. Incubating intact seedlings from hot steam–treated seeds with Pantoea strains triggered H2O2 production, whereas Pseudomonas strains dampened H2O2 levels, attributable to higher catalase activities. The genus Pantoea was much less represented among seedling endophytes than genus Pseudomonas, with other endophytic genera, including Bacillus and Paenibacillus, also possessing high catalase activities. Overall, our results show that certain bacteria of the seed microbiota are able to modulate the extracellular redox environment during germination and early seedling growth, and high catalase activity is proposed as a key trait of seed endophytes.


2011 ◽  
Vol 204-210 ◽  
pp. 672-677 ◽  
Author(s):  
Tian Hong Zhao ◽  
Jun Li Wang ◽  
Yan Wang ◽  
Ying Cao

Open-top chambers (OTCs) were used to investigate the mechanism of antioxidant enzymes to eliminate reactive oxygen species (ROS) of plants under troposphere O3stress. The results indicated that, compared to control, the O3concentration of 80±10 nL·L-1and 110±10 nL·L-1induced an increase on malondialdehyde (MDA) content and a decrease on superoxide anion (O2)production rate and hydrogen peroxide (H2O2) content during the whole growth stage. Simultaneity, it showed a trend of increasing in earlier stage and decreasing in later stage of the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR), while the dehydroascorbate reductase (DHAR) activity was increased in earlier period, decreased in middle periods and then increased in later period compared to control, respectively. The results show that elevated O3concentration accelerates ROS metabolism rates, reduces the efficiency of antioxidant enzymes that can not tolerate oxidative damage caused by elevated O3concentration, which represents injured affects to soybean.


Author(s):  
George E. Childs ◽  
Joseph H. Miller

Biochemical and differential centrifugation studies have demonstrated that the oxidative enzymes of Acanthamoeba sp. are localized in mitochondria and peroxisomes (microbodies). Although hartmanellid amoebae have been the subject of several electron microscopic studies, peroxisomes have not been described from these organisms or other protozoa. Cytochemical tests employing diaminobenzidine-tetra HCl (DAB) and hydrogen peroxide were used for the ultrastructural localization of peroxidases of trophozoites of Hartmanella sp. (A-l, Culbertson), a pathogenic strain grown in axenic cultures of trypticase soy broth.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2010 ◽  
Vol 34 (8) ◽  
pp. S27-S27
Author(s):  
Xueling Dai ◽  
Ping Chang ◽  
Ke Xu ◽  
Changjun Lin ◽  
Hanchang Huang ◽  
...  

2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


2005 ◽  
Vol 173 (4S) ◽  
pp. 332-332
Author(s):  
Hitoshi Masuda ◽  
Kazunori Kihara ◽  
Michael B. Chancellor ◽  
Naoki Yoshimura

Sign in / Sign up

Export Citation Format

Share Document