Resistant structure of extruded starch: effects of fatty acids with different chain lengths and degree of unsaturation

2021 ◽  
pp. 131510
Author(s):  
Canxin Cai ◽  
Yaoqi Tian ◽  
Chunrui Sun ◽  
Zhengyu Jin
1962 ◽  
Vol 40 (7) ◽  
pp. 1326-1338 ◽  
Author(s):  
A. P. Tulloch ◽  
J. F. T. Spencer ◽  
P. A. J. Gorin

The yield of extracellular glycolipid produced by Torulopsis magnoliae is increased three-to five-fold by the addition of suitable compounds to the growing culture. The supplement, which can be a long-chain acid, ester, hydrocarbon, or glyceride, is hydroxylated and converted to hydroxy fatty acid sophorosides. Fatty esters of all chain lengths from C16 to C22, including several unsaturated esters, and even-numbered hydrocarbons from C16 to C24 are readily fermented. Shorter-chain compounds are used poorly or not at all. With compounds of 16 to 18 carbon atoms, hydroxylation occurs at the terminal or penultimate carbon atom, depending on degree of unsaturation and chain length. Substrates of more than 18 carbon atoms are mainly reduced in chain length by one or more two-carbon units and hydroxylated, giving C17 or C18 acids with the hydroxyl group on the penultimate carbon atom. The various enzymic reactions which occur during the fermentation are discussed.


2007 ◽  
Vol 73 (24) ◽  
pp. 7882-7890 ◽  
Author(s):  
Vincent Grossi ◽  
Cristiana Cravo-Laureau ◽  
Alain Méou ◽  
Danielle Raphel ◽  
Frédéric Garzino ◽  
...  

ABSTRACT The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [13C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(ω-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium.


1914 ◽  
Vol 19 (3) ◽  
pp. 239-250 ◽  
Author(s):  
James W. Jobling ◽  
William Petersen

1. Sodium soaps prepared from olive oil, croton oil, cod-liver oil, linseed oil, etc., have the property of inhibiting the action of trypsin and leucoprotease. 2. The activity of these soaps is dependent upon the degree of unsaturation of the fatty acids and is in proportion to their iodin value. 3. Saturation of the acids with a halogen (iodin) causes a loss of this property. 4. Soaps of the saturated fatty acids tested do not have this influence on ferments.


2013 ◽  
Vol 6 (3) ◽  
pp. 121-133 ◽  
Author(s):  
Eamon P. Breen ◽  
Wayne Pilgrim ◽  
Kieran J. Clarke ◽  
Cristy Yssel ◽  
Mark Farrell ◽  
...  

1999 ◽  
Vol 81 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Amanda E. Jones ◽  
Michael Stolinski ◽  
Ruth D. Smith ◽  
Jane L. Murphy ◽  
Stephen A. Wootton

The gastrointestinal handling and metabolic disposal of [1-13C]palmitic acid, [1-13C]stearic acid and [1-13C]oleic acid administered within a lipid–casein–glucose–sucrose emulsion were examined in normal healthy women by determining both the amount and nature of the13C label in stool and label excreted on breath as13CO2. The greatest excretion of13C label in stool was in the stearic acid trial (9.2 % of administered dose) whilst comparatively little label was observed in stool in either the palmitic acid (1.2 % of administered dose) or oleic acid (1.9 % of administered dose) trials. In both the palmitic acid and oleic acid trials, all of the label in stool was identified as being present in the form in which it was administered (i.e. [13C]palmitic acid in the palmitic acid trial and [13C]oleic acid in the oleic acid trial). In contrast, only 87 % of the label in the stool in the stearic acid trial was identified as [13C]stearic acid, the remainder was identified as [13C]palmitic acid which may reflect chain shortening of [1-13C]stearic acid within the gastrointestinal tract. Small, but statistically significant, differences were observed in the time course of recovery of13C label on breath over the initial 9 h of the study period (oleic acid = palmitic acid > stearic acid). However, when calculated over the 24 h study period, the recovery of the label as13CO2was similar in all three trials (approximately 25 % of absorbed dose). These results support the view that chain length and degree of unsaturation may influence the gastrointestinal handling and immediate metabolic disposal of these fatty acids even when presented within an emulsion.


Sign in / Sign up

Export Citation Format

Share Document