The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye

Food Control ◽  
2015 ◽  
Vol 48 ◽  
pp. 75-83 ◽  
Author(s):  
Simon A. Haughey ◽  
Pamela Galvin-King ◽  
Yen-Cheng Ho ◽  
Steven E.J. Bell ◽  
Christopher T. Elliott
NIR news ◽  
2021 ◽  
Vol 32 (1-2) ◽  
pp. 11-16
Author(s):  
Justyna Grabska ◽  
Krzysztof B Beć ◽  
Christian W Huck

Modern forensics encounters new challenges and demands new analytical methods that would meet variety of prerequisites regarding their accuracy, rapidness, flexibility, and reliability. Vibrational spectroscopic methods, in particular near-infrared spectroscopy, offer such potential and meet an increasing interest in forensics for authentication of various documents. Pittcon 2020 Conference, which took place in Chicago, Illinois, included a Session dedicated to the role of novel tools of investigation in the forensics of tomorrow. This article summarizes and complements the presentation upon how the current state-of-the-art and future prospects of vibrational spectroscopic techniques fits into this role. The application of near-infrared spectroscopy, including the benefits stemming from using novel miniaturized portable instruments, Raman and surface-enhanced Raman scattering techniques, is discussed in detail in the present article.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4746
Author(s):  
Marta Kuwik ◽  
Joanna Pisarska ◽  
Wojciech A. Pisarski

The effect of oxide modifiers on multiple properties (structural and spectroscopic) of phosphate glasses with molar composition 60P2O5-(10−x)Ga2O3-30MO-xEu2O3 and 60P2O5-(10−y)Ga2O3-30MO-yEr2O3 (where M = Ca, Sr, Ba; x = 0, 0.5; y = 0, 1) were systematically examined and discussed. The local structure of systems was evidenced by the infrared (IR-ATR) and Raman spectroscopic techniques. The spectroscopic behaviors of the studied glass systems were determined based on analysis of recorded spectra (excitation and emission) as well as luminescence decay curves. Intense red and near-infrared emissions (1.5 μm) were observed for samples doped with Eu3+ and Er3+ ions, respectively. It was found that the value of fluorescence intensity ratio R/O related to 5D0→7F2 (red) and 5D0→7F1 (orange) transition of Eu3+ ions depends on the oxide modifiers MO in the glass host. However, no clear influence of glass modifiers on the luminescence linewidth (FWHM) was observed for phosphate systems doped with Er3+ ions. Moreover, the 5D0 and 4I13/2 luminescence lifetimes of Eu3+ and Er3+ ions increase with the increasing ionic radius of M2+ (M = Ca, Sr, Ba) in the host matrix. The obtained results suggest the applicability of the phosphate glasses with oxide modifiers as potential red and near-infrared photoluminescent materials in photonic devices.


2020 ◽  
Vol 44 (8) ◽  
pp. 851-860
Author(s):  
Joy Eliaerts ◽  
Natalie Meert ◽  
Pierre Dardenne ◽  
Vincent Baeten ◽  
Juan-Antonio Fernandez Pierna ◽  
...  

Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC–MS) and gas chromatography with flame-ionization detection (GC–FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.


2020 ◽  
Vol 75 (9-10) ◽  
pp. 805-813
Author(s):  
Irma Peschke ◽  
Lars Robben ◽  
Christof Köhler ◽  
Thomas Frauenheim ◽  
Josef-Christian Buhl ◽  
...  

AbstractSynthesis, crystal structure and temperature-dependent behavior of Na2H4Ga2GeO8 are reported. This novel gallogermanate crystallizes in space group I41/acd with room-temperature powder diffraction lattice parameters of a = 1298.05(1) pm and c = 870.66(1) pm. The structure consists of MO4 (M = Ga, Ge) tetrahedra in four-ring chains, which are connected by two different (left- and right-handed) helical chains of NaO6 octahedra. Protons coordinating the oxygen atoms of the GaO4 tetrahedra not linked to germanium atoms ensure the charge balance. Structure solution and refinement are based on single crystal X-ray diffraction measurements. Proton positions are estimated using a combined approach of DFT calculations and NMR, FTIR and Raman spectroscopic techniques. The thermal expansion was examined in the range between T = 20(2) K and the compound’s decomposition temperature at 568(5) K, in which no phase transition could be observed, and Debye temperatures of 266(11) and 1566(65) K were determined for the volume expansion.


2016 ◽  
Vol 44 (2) ◽  
pp. 459-465 ◽  
Author(s):  
Ioana CIOBANU ◽  
Maria CANTOR ◽  
Razvan STEFAN ◽  
Erzsebet BUTA ◽  
Klara MAGYARI ◽  
...  

The aim of this study was to assess by means of biometric measurements and FT-IR and FT-Raman spectroscopic techniques the influence of storage conditions on the morphology and biochemical composition of Dahlia tubers. Investigated samples belong to ‘Kennemerland’ and ‘Red Pygmy’ cultivars of the Dahlia hybrida species, which were preserved over winterat 5-8 °C, 30-40% air humidity in different substrates: sand, sand and sawdust, peat and sawdust. The biometric parameters revealed that the peat and sawdust substrate is the most appropriate one for tubers storage, whereas the sand substrate is the least suitable one. The inulin signature was evidenced in all tuber samples as well as the changes of biochemical composition induced by different storage conditions. The analysis of the FT-IR and FT-Raman spectra demonstrated that the inulinaccumulation inside the tubers is favourably influenced by the sand storage, and depends on the cultivar type. Moreover, it was established that the peat and sawdust substrate favours the polyacetylene formation inside the tubers probably because it facilitates the occurrence and development of pathogens inside the tuber. It was also found that the polyacetylene concentration increased, which is associated with the plant response to the pathogen invasion, depends on the cultivar type.


2014 ◽  
Vol 62 ◽  
pp. 22-33 ◽  
Author(s):  
Raquel Rodríguez-Solana ◽  
Dimitra J. Daferera ◽  
Christina Mitsi ◽  
Panayiotis Trigas ◽  
Moschos Polissiou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document