Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential

2018 ◽  
Vol 79 ◽  
pp. 572-578 ◽  
Author(s):  
S. Ravindran ◽  
M.A.K. Williams ◽  
R.L. Ward ◽  
G. Gillies
2011 ◽  
Vol 74 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Krzysztof Banaś

The effect of dissolved organic carbon (DOC) on the environmental conditions of macrophytes has been studied in 35 lakes divided into soft- and hardwater: oligohumic (&lt;4.0 mg C dm<sup>-3</sup>), α-mesohumic (4.0-8.0 mg C dm<sup>-3</sup>), β-mesohumic (8.1-16.0 mg C dm<sup>-3</sup>) and polihumic (&gt;16.0 mg C dm<sup>-3</sup>). The optimum environmental conditions for macrophytes have been found in oligohumic lakes, characterised by low water colour and its good transparency. In soft- and hardwater lakes increasing concentration of DOC is accompanied with an increase in the colour (r=0.95), while the visibility decreases. With increasing DOC in the near-sediment layer the pH values decrease while the concentration of nitrogen increases and the concentration of phosphorus slightly increases. In hardwater lakes with increasing DOC concentration, the redox potential, conductivity, total hardness and calcium concentration in the near-sediment water decrease, whereas the content of CO<sup>2</sup> remains at a very low level.


1986 ◽  
Vol 103 (4) ◽  
pp. 1509-1515 ◽  
Author(s):  
R R Swezey ◽  
D Epel

In unfertilized eggs of the sea urchin, Strongylocentrotus purpuratus, glucose-6-phosphate dehydrogenase (G6PDH) associates with the particulate elements remaining either after homogenization or extraction of eggs with non-ionic detergent in low ionic-strength media. At physiological ionic strength, the extent of G6PDH binding to these particulate elements is proportional to the total protein concentration in the extracts. In fertilized eggs this association is prevented by one or more low molecular weight solutes. The dissociation is reversible, and there are no permanent modifications of either G6PDH or its particulate binding site that affect binding. After fertilization, the time course of dissociation of G6PDH from particulate elements is too fast to be caused by a change in intracellular pH, but it could be triggered, but not maintained, by an increase in the intracellular calcium concentration. Binding of G6PDH to the particulate fraction lowers its catalytic activity at all substrate concentrations. Therefore, release of the enzyme into the cytoplasm may be an important part of the suite of events causing metabolic activation of the egg at fertilization.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 231 ◽  
Author(s):  
Malibongwe Manono ◽  
Kirsten Corin ◽  
Jenny Wiese

Previous studies speculate that hydroxo species present in flotation pulps at pH > 9, particularly those of polyvalent cations, selectively adsorb onto gangue minerals. Such species supposedly enhance the depressive action of carboxymethyl cellulose (CMC) onto gangue via an acid-base interaction between the positively charged mineral surface and the negatively charged CMC molecule. Thus, the hydrophilicity of gangue minerals is enhanced, preventing the dilution of the concentrate. However, as there is little evidence to support these claims for complex process waters of increasing ionic strength, it is important to investigate. Adsorption data and mineral surface charge analyses provide a fundamental understanding of how electrolytes and their ionic strengths affect gangue mineral-depressant adsorption. It is strongly anticipated that decoupling these effects will allow process operators to tailor their process water quality needs towards best flotation operating regimes and, in the long run, effect closed water circuits. Thus, using talc as a proxy for naturally floatable gangue common in sulfidic Cu–Ni–PGM ores, this work investigates the influence of the ionic strength of process water on the adsorption of CMC onto talc for a perspective on how saline water in sulfidic ores would affect the behavior and therefore management of floatable gangue. In the presence of CMC, the microflotation results showed that the rate of talc recovery decreased with increasing ionic strength of process water. Increases in ionic strength resulted in an increase in the adsorption of CMC onto talc. Talc particles proved to have been more coagulated at higher ionic strength since the settling time decreased with increasing ionic strength. Furthermore, the zeta potential of talc particles became less negative at higher ionic strengths of process water. It is thus proposed that increases in the ionic strength of process water increased the zeta potential of talc particles, enhancing the adsorption of CMC onto talc. This in turn created a more coagulated nature on talc particles, increasing their hydrophilicity and thereby retarding floatability.


1980 ◽  
Vol 47 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Douglas G. Dalgleish ◽  
Thomas G. Parker

SummaryBinding isotherms for the calcium ion–αsl-casein system have been measured, as functions of ionic strength, temperature, and pH, and the isotherms have been analysed in terms of binding constants modified by substitution effects. The results demonstrate that the strength of binding is increased with increasing temperature and decreased by increasing ionic strength or decreasing pH, all of which may be explained semi-quantitatively. Parallel studies on the precipitability of the αsl-casein–Ca2+ complexes showed that there is considerable variation in the extent of calcium binding required to initiate precipitation of the protein, and in the calcium concentration necessary to achieve the required extent of ligand binding.


2013 ◽  
Vol 14 (1) ◽  
pp. 150-157 ◽  
Author(s):  
Yang Xu ◽  
Xiaona Chu ◽  
Jiangyong Hu ◽  
Say Leong Ong

Three types of nanosilver materials, which were commercial, chemically-synthesized and biologically-synthesized, respectively, were compared in terms of the disinfection efficiencies against Escherichia coli and MS2 coliphage in order to pinpoint promising material with the best performance. Disinfection results showed biologically-synthesized silver nanoparticles (referred to hereafter as ‘bio-AgNPs’) had the best disinfection performance, 10 mg/L of which was able to inactivate all the E. coli in 1 min (&gt;6 log removals) and achieved 4 log removals of MS2 coliphage. Bio-AgNPs were therefore selected for further study in terms of effects of the concentration and contact time as well as the impacts of environmental conditions on the viral inactivation. Given the viral inactivation profile of bio-AgNPs shown in this study, it could be concluded that viral inactivation by bio-AgNPs could be inhibited by total organic carbon (TOC) (10 mg/L as humic acid) and chloride ion (5 mg/L) to a large extent while Ca2+/Mg2+/ionic strength only had minor effects on the viral inactivation at high concentrations (188 mg/L as CaCO3 of hardness or 5.6 mM of ionic strength, respectively). This part of the study may help enlighten further mechanism studies on viral inactivation by nanosilver.


2011 ◽  
Vol 85 (3) ◽  
pp. 522-528 ◽  
Author(s):  
Maria G. Carneiro-da-Cunha ◽  
Miguel A. Cerqueira ◽  
Bartolomeu W.S. Souza ◽  
José A. Teixeira ◽  
António A. Vicente

Sign in / Sign up

Export Citation Format

Share Document