Activation of the phenylpropanoid biosynthesis pathway reveals a novel action mechanism of the elicitor effect of chitosan on avocado fruit epicarp

2019 ◽  
Vol 121 ◽  
pp. 586-592 ◽  
Author(s):  
Luis-Ángel Xoca-Orozco ◽  
Selene Aguilera-Aguirre ◽  
Julio Vega-Arreguín ◽  
Gustavo Acevedo-Hernández ◽  
Erik Tovar-Pérez ◽  
...  
2021 ◽  
Author(s):  
Ting Luo ◽  
Zhongfeng Zhou ◽  
Yuchi Deng ◽  
Yegeng Fan ◽  
Lihang Qiu ◽  
...  

Abstract BackgroundRatoon sugarcane (Saccharum officinarum) is susceptible to chlorosis, significantly reducing production. The molecular mechanism underlying this phenomenon remains unknown. We analyzed the transcriptome and metabolome of chlorotic and non-chlorotic sugarcane leaves from the same field to gain insight into the symptom. ResultsThe agronomic traits, like plant height, leaf number, stalk nod number, and tiller number, declined in chlorotic sugarcane. The chlorophyll content in chlorosis leaves was significantly lower than non-chlorotic leaves. A total of 11,776 differentially expressed genes (DEGs) were discovered in transcriptome analysis. In the KEGG enriched chlorophyll metabolism pathway, sixteen DEGs were found, eleven of which were down-regulated. Two photosynthesis pathways were also enriched, with 32 genes downregulated and four genes upregulated. Among the 81 enriched GO biological processes, there were four categories related to metal ion homeostasis and three related to metal ion transport. Approximately 400 metabolites were identified in metabolome analysis. The thirteen classified differentially expressed metabolites (DEMs) were found all down-regulated. The phenylpropanoid biosynthesis pathway was enriched in DEGs and DEMs, indicating phenylpropanoids' vital role in chlorosis. ConclusionsAccording to our study, chlorophyll production, metal ion metabolism, photosynthesis, and some secondary metabolites of the phenylpropanoid biosynthesis pathway, were considerably altered in chlorotic ratoon sugarcane. Our finding revealed the relation between chlorosis and these pathways, which would further the understanding of the mechanism of ratoon sugarcane chlorosis.


2018 ◽  
Author(s):  
Wen-Fang Li ◽  
Juan Mao ◽  
Shi-Jin Yang ◽  
Zhi-Gang Guo ◽  
Zong-Huan Ma ◽  
...  

ABSTRACTBud sport mutants of apple (Malus domestica Borkh.) trees with a highly blushed colouring pattern are mainly caused by the accumulation of anthocyanins in the pericarp. Hormones are important factors modulating anthocyanin accumulation. However, a good understanding of the interplay between hormones and anthocyanin synthesis in apples, especially in mutants at the molecular level, remains elusive. Here, physiological and comparative transcriptome approaches were used to reveal the molecular basis of pericarp pigmentation in ‘Red Delicious’ and its mutants, including ‘Starking Red’, ‘Starkrimson’, ‘Campbell Redchief’ and ‘Vallee spur’, which were designated G0 to G4, respectively. Pericarp pigmentation gradually proliferated from G0 to G4. The anthocyanin content was higher in the mutants than in ‘Red Delicious’. The activation of early phenylpropanoid biosynthesis genes, including ASP3, PAL, 4CL, PER, CHS, CYP98A and F3’H, was responsible for anthocyanin accumulation in mutants. In addition, IAA and ABA had a positive regulatory effect on the synthesis of anthocyanins, while GA had the reverse effect. The down-regulation of AACT1, HMGS, HMGR, MVK, MVD2, IDI1 and FPPS2 involved in terpenoid biosynthesis influences anthocyanin accumulation by positively regulating transcripts of AUX1 and SAUR that contribute to the synthesis of IAA, GID2 to GA, PP2C and SnRK2 to ABA. Furthermore, MYB and bHLH members, which are highly correlated (r=0.882–0.980) with anthocyanin content, modulated anthocyanin accumulation by regulating the transcription of structural genes, including CHS and F3’H, involved in the flavonoid biosynthesis pathway.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muzammil Shah ◽  
Hesham F. Alharby ◽  
Khalid Rehman Hakeem ◽  
Niaz Ali ◽  
Inayat Ur Rahman ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2399
Author(s):  
Youcheng Zhu ◽  
Qingyu Wang ◽  
Ying Wang ◽  
Yang Xu ◽  
Jingwen Li ◽  
...  

Salt stress is the main abiotic stress that limits crop yield and agricultural development. Therefore, it is imperative to study the effects of salt stress on plants and the mechanisms through which plants respond to salt stress. In this study, we used transcriptomics and metabolomics to explore the effects of salt stress on Sophora alopecuroides. We found that salt stress incurred significant gene expression and metabolite changes at 0, 4, 24, 48, and 72 h. The integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes (DEGs) and differential metabolites (DMs) obtained in the phenylpropanoid biosynthesis pathway were significantly correlated under salt stress. Of these, 28 DEGs and seven DMs were involved in lignin synthesis and 23 DEGs and seven DMs were involved in flavonoid synthesis. Under salt stress, the expression of genes and metabolites related to lignin and flavonoid synthesis changed significantly. Lignin and flavonoids may participate in the removal of reactive oxygen species (ROS) in the root tissue of S. alopecuroides and reduced the damage caused under salt stress. Our research provides new ideas and genetic resources to study the mechanism of plant responses to salt stress and further improve the salt tolerance of plants.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenqiao Song ◽  
Linlin Guo ◽  
Tian Liu ◽  
Caicai Lin ◽  
Jianhua Wang ◽  
...  

Salvia miltiorrhiza Bunge is an important traditional Chinese medicine (TCM). In this study, two S. miltiorrhiza genotypes (BH18 and ZH23) with different phenolic acid concentrations were used for de novo RNA sequencing (RNA-seq). A total of 170,787 transcripts and 56,216 unigenes were obtained. There were 670 differentially expressed genes (DEGs) identified between BH18 and ZH23, 250 of which were upregulated in ZH23, with genes involved in the phenylpropanoid biosynthesis pathway being the most upregulated genes. Nine genes involved in the lignin biosynthesis pathway were upregulated in BH18 and thus result in higher lignin content in BH18. However, expression profiles of most genes involved in the core common upstream phenylpropanoid biosynthesis pathway were higher in ZH23 than that in BH18. These results indicated that genes involved in the core common upstream phenylpropanoid biosynthesis pathway might play an important role in downstream secondary metabolism and demonstrated that lignin biosynthesis was a putative partially competing pathway with phenolic acid biosynthesis. The results of this study expanded our understanding of the regulation of phenolic acid biosynthesis in S. miltiorrhiza.


Sign in / Sign up

Export Citation Format

Share Document