Post-translational and transcriptional regulation of phenylpropanoid biosynthesis pathway by Kelch repeat F-box protein SAGL1

2018 ◽  
Vol 99 (1-2) ◽  
pp. 135-148 ◽  
Author(s):  
Si-in Yu ◽  
Hyojin Kim ◽  
Dae-Jin Yun ◽  
Mi Chung Suh ◽  
Byeong-ha Lee
2019 ◽  
Author(s):  
Jeongim Kim ◽  
Xuebin Zhang ◽  
Pete Pascuzzi ◽  
Chang-Jun Liu ◽  
Clint Chapple

Plants produce several hundreds of thousands of secondary metabolites that are important for adaptation to various environmental conditions. Although different groups of secondary metabolites are synthesized through unique biosynthetic pathways, plants must orchestrate their production simultaneously. Phenylpropanoids and glucosinolates are two classes of secondary metabolites that are synthesized through apparently independent biosynthetic pathways. Genetic evidence has revealed that the accumulation of glucosinolate intermediates limits phenylpropanoid production in a Mediator Subunit 5 (MED5) dependent manner. To elucidate the molecular mechanism underlying this process, we analyzed the transcriptomes of a suite of glucosinolate-deficient mutants using RNAseq and identified mis-regulated genes that are rescued by the disruption of MED5. The expression of a group of Kelch Domain F-Box genes (KFBs) that function in PAL degradation is affected in glucosinolate biosynthesis mutants and the disruption of these KFBs restores phenylpropanoid deficiency, dwarfism and sterility in the mutants. Our study suggests that glucosinolate/phenylpropanoid metabolic crosstalk involves the transcriptional regulation of KFB genes that initiate the degradation of the enzyme phenylalanine ammonia-lyase, which catalyzes the first step of the phenylpropanoid biosynthesis pathway. Nevertheless, KFB mutant plants remain partially sensitive to glucosinolate pathway mutations, suggesting that other mechanisms that link the two pathways also exist.


2019 ◽  
Vol 121 ◽  
pp. 586-592 ◽  
Author(s):  
Luis-Ángel Xoca-Orozco ◽  
Selene Aguilera-Aguirre ◽  
Julio Vega-Arreguín ◽  
Gustavo Acevedo-Hernández ◽  
Erik Tovar-Pérez ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Jin Zhang ◽  
Gerald A. Tuskan ◽  
Timothy J. Tschaplinski ◽  
Wellington Muchero ◽  
Jin-Gui Chen

2021 ◽  
Author(s):  
Ting Luo ◽  
Zhongfeng Zhou ◽  
Yuchi Deng ◽  
Yegeng Fan ◽  
Lihang Qiu ◽  
...  

Abstract BackgroundRatoon sugarcane (Saccharum officinarum) is susceptible to chlorosis, significantly reducing production. The molecular mechanism underlying this phenomenon remains unknown. We analyzed the transcriptome and metabolome of chlorotic and non-chlorotic sugarcane leaves from the same field to gain insight into the symptom. ResultsThe agronomic traits, like plant height, leaf number, stalk nod number, and tiller number, declined in chlorotic sugarcane. The chlorophyll content in chlorosis leaves was significantly lower than non-chlorotic leaves. A total of 11,776 differentially expressed genes (DEGs) were discovered in transcriptome analysis. In the KEGG enriched chlorophyll metabolism pathway, sixteen DEGs were found, eleven of which were down-regulated. Two photosynthesis pathways were also enriched, with 32 genes downregulated and four genes upregulated. Among the 81 enriched GO biological processes, there were four categories related to metal ion homeostasis and three related to metal ion transport. Approximately 400 metabolites were identified in metabolome analysis. The thirteen classified differentially expressed metabolites (DEMs) were found all down-regulated. The phenylpropanoid biosynthesis pathway was enriched in DEGs and DEMs, indicating phenylpropanoids' vital role in chlorosis. ConclusionsAccording to our study, chlorophyll production, metal ion metabolism, photosynthesis, and some secondary metabolites of the phenylpropanoid biosynthesis pathway, were considerably altered in chlorotic ratoon sugarcane. Our finding revealed the relation between chlorosis and these pathways, which would further the understanding of the mechanism of ratoon sugarcane chlorosis.


2018 ◽  
Author(s):  
Wen-Fang Li ◽  
Juan Mao ◽  
Shi-Jin Yang ◽  
Zhi-Gang Guo ◽  
Zong-Huan Ma ◽  
...  

ABSTRACTBud sport mutants of apple (Malus domestica Borkh.) trees with a highly blushed colouring pattern are mainly caused by the accumulation of anthocyanins in the pericarp. Hormones are important factors modulating anthocyanin accumulation. However, a good understanding of the interplay between hormones and anthocyanin synthesis in apples, especially in mutants at the molecular level, remains elusive. Here, physiological and comparative transcriptome approaches were used to reveal the molecular basis of pericarp pigmentation in ‘Red Delicious’ and its mutants, including ‘Starking Red’, ‘Starkrimson’, ‘Campbell Redchief’ and ‘Vallee spur’, which were designated G0 to G4, respectively. Pericarp pigmentation gradually proliferated from G0 to G4. The anthocyanin content was higher in the mutants than in ‘Red Delicious’. The activation of early phenylpropanoid biosynthesis genes, including ASP3, PAL, 4CL, PER, CHS, CYP98A and F3’H, was responsible for anthocyanin accumulation in mutants. In addition, IAA and ABA had a positive regulatory effect on the synthesis of anthocyanins, while GA had the reverse effect. The down-regulation of AACT1, HMGS, HMGR, MVK, MVD2, IDI1 and FPPS2 involved in terpenoid biosynthesis influences anthocyanin accumulation by positively regulating transcripts of AUX1 and SAUR that contribute to the synthesis of IAA, GID2 to GA, PP2C and SnRK2 to ABA. Furthermore, MYB and bHLH members, which are highly correlated (r=0.882–0.980) with anthocyanin content, modulated anthocyanin accumulation by regulating the transcription of structural genes, including CHS and F3’H, involved in the flavonoid biosynthesis pathway.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muzammil Shah ◽  
Hesham F. Alharby ◽  
Khalid Rehman Hakeem ◽  
Niaz Ali ◽  
Inayat Ur Rahman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document