scholarly journals Pericarp Pigmentation Correlates with Hormones and Intensifies with Continuation of Bud Sport Generations from ‘Red Delicious’

2018 ◽  
Author(s):  
Wen-Fang Li ◽  
Juan Mao ◽  
Shi-Jin Yang ◽  
Zhi-Gang Guo ◽  
Zong-Huan Ma ◽  
...  

ABSTRACTBud sport mutants of apple (Malus domestica Borkh.) trees with a highly blushed colouring pattern are mainly caused by the accumulation of anthocyanins in the pericarp. Hormones are important factors modulating anthocyanin accumulation. However, a good understanding of the interplay between hormones and anthocyanin synthesis in apples, especially in mutants at the molecular level, remains elusive. Here, physiological and comparative transcriptome approaches were used to reveal the molecular basis of pericarp pigmentation in ‘Red Delicious’ and its mutants, including ‘Starking Red’, ‘Starkrimson’, ‘Campbell Redchief’ and ‘Vallee spur’, which were designated G0 to G4, respectively. Pericarp pigmentation gradually proliferated from G0 to G4. The anthocyanin content was higher in the mutants than in ‘Red Delicious’. The activation of early phenylpropanoid biosynthesis genes, including ASP3, PAL, 4CL, PER, CHS, CYP98A and F3’H, was responsible for anthocyanin accumulation in mutants. In addition, IAA and ABA had a positive regulatory effect on the synthesis of anthocyanins, while GA had the reverse effect. The down-regulation of AACT1, HMGS, HMGR, MVK, MVD2, IDI1 and FPPS2 involved in terpenoid biosynthesis influences anthocyanin accumulation by positively regulating transcripts of AUX1 and SAUR that contribute to the synthesis of IAA, GID2 to GA, PP2C and SnRK2 to ABA. Furthermore, MYB and bHLH members, which are highly correlated (r=0.882–0.980) with anthocyanin content, modulated anthocyanin accumulation by regulating the transcription of structural genes, including CHS and F3’H, involved in the flavonoid biosynthesis pathway.

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1073
Author(s):  
Meng-Bo Tian ◽  
Lin Yuan ◽  
Ming-Yuan Zheng ◽  
Zhu-Mei Xi

Anthocyanins are vital components of plant secondary metabolites, and are also the most important coloring substances in wine. Teinturier cultivars are rich in anthocyanins. However, the differences in anthocyanin accumulation and profiles between teinturier and non-teinturier cultivars have not been reported. In this study, Yan 73 and Dunkelfelder were selected as the experimental materials, and three non-teinturier cultivars were used for comparison. LC-MS and qRT-PCR were used to determine the individual anthocyanin contents and the relative gene expression. The results show that the total anthocyanin content of the teinturier cultivars was considerably higher than that in non-teinturier cultivars, and the levels of individual anthocyanins increased gradually during ripening. Lower ratios of modified anthocyanins were found in the teinturier cultivars, which was not only due to the high expression level of VvUFGT and VvGST4, but also due to the relatively low expression of VvOMT in these cultivars. Cluster analysis of gene expression and anthocyanin accumulation showed that VvUFGT is related to anthocyanin accumulation, and that AM1 is related to the synthesis and transport of methylated anthocyanins. Our results will be useful for further clarifying the pathways of anthocyanin synthesis, modification, and transport in teinturier cultivars.


2020 ◽  
Author(s):  
Nana Su ◽  
Ze Liu ◽  
Hui Chen ◽  
Mengyang Niu ◽  
Jin Cui

Abstract Background: The biosynthesis of anthocyanin in the hypocotyls of radish (Raphanus sativus L.) sprouts was enhanced by hemin in our preliminary experiments, but the underlying mechanism is unclear. Here, we found that NO (nitric oxide) exerted an essential role in Hemin-regulated anthocyanin biosynthesis, which was supported by the following results.Results: Hemin boosted anthocyanin as well as NO content. NO-scavenger cPTIO (carboxy-PTIO) significantly attenuated hemin-induced increase of anthocyanin content, transcripts of anthocyanin synthesis related genes and positive transcription factors, implying that NO played a prominent role during hemin-induced anthocyanin biosynthesis. Hemin specific inhibitor ZnPP (Zinc Protoporphyrin) strongly reduced anthocyanin content, while, NO donor SNP (Sodium Nitroprusside) addition considerably reversed this inhibition and by contrast, resulted in a significant increase in anthocyanin accumulation, closely paralleling the transcripts of structural genes and transcription factors. Moreover, NO content, NR (nitrate reductase) activity and expression level of NOA (nitric oxide associated factor) were up-regulated by Hemin. Conclusions:Those consequences indicated that NO might work downstream in Hemin-heightened anthocyanin accumulation in radish sprouts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Hu ◽  
Xiaomeng Yue ◽  
Jinxue Song ◽  
Guipei Xing ◽  
Jun Chen ◽  
...  

Soybean sprouts are a flavorful microgreen that can be eaten all year round and are widely favored in Southeast Asia. In this study, the regulatory mechanism of calcium on anthocyanin biosynthesis in soybean sprouts under blue light was investigated. The results showed that blue light, with a short wavelength, effectively induced anthocyanin accumulation in the hypocotyl of soybean sprout cultivar “Dongnong 690.” Calcium supplementation further enhanced anthocyanin content, which was obviously inhibited by LaCl3 and neomycin treatment. Moreover, exogenous calcium changed the metabolism of anthocyanins, and seven anthocyanin compounds were detected. The trend of calcium fluorescence intensity in hypocotyl cells, as well as that of the inositol 1,4,5-trisphosphate and calmodulin content, was consistent with that of anthocyanins content. Specific spatial distribution patterns of calcium antimonate precipitation were observed in the ultrastructure of hypocotyl cells under different conditions. Furthermore, calcium application upregulated the expression of genes related to anthocyanin biosynthesis, and calcium inhibitors suppressed these genes. Finally, transcriptomics was performed to gain global insights into the molecular regulation mechanism of calcium-associated anthocyanin production. Genes from the flavonoid biosynthesis pathway were distinctly enriched among the differentially expressed genes, and weighted gene co-expression network analysis showed that two MYBs were related to the accumulation of anthocyanins. These results indicated that calcium released from apoplast and intracellular stores in specific spatial-temporal features promote blue light-induced anthocyanin accumulation by upregulation of the expression of genes related to anthocyanin synthesis of “Dongnong 690” hypocotyl. The findings deepen the understanding of the calcium regulation mechanism of blue light-induced anthocyanin accumulation in soybean sprouts, which will help growers produce high-quality foods beneficial for human health.


1982 ◽  
Vol 60 (6) ◽  
pp. 741-745 ◽  
Author(s):  
Jeffrey C. Suttle ◽  
Donald R. Schreiner

The effects of the herbicide DPX-4189 (2-chloro-N-((4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl)benzenesulfonamide) on anthocyanin accumulation, phenylalanine ammonia lyase (PAL) activity, and ethylene production in seedlings of soybean (Glycine max L.) were investigated. Application of 1 μg DPX-4189 per plant led to an increase in anthocyanin content in soybean hypocotyls. The increase in anthocyanin content became evident 4 days after application of the herbicide. Accompanying the increase in anthocyanin content was an eightfold increase in extractable PAL activity. An increase in endogenous ethylene evolution also accompanied the increase in anthocyanin content. Application of silver nitrate (an inhibitor of ethylene action) to herbicide-treated seedlings did not prevent the increase in anthocyanin content. Application of 2-chloroethylphosphonic acid (an ethylene-releasing compound) to soybean seedlings stimulated PAL activity but had no effect on anthocyanin content. These results indicated that ethylene did not play a role in DPX-4189 mediated anthocyanin accumulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiayi Zhu ◽  
Xueying Guo ◽  
Xin Li ◽  
Dongqin Tang

Freesia hybrida is rich in flower colors with beautiful flower shapes and pleasant aroma. Flavonoids are vital to the color formation of its flowers. In this study, five Freesia cultivars with different flower colors were used to study on the level of accumulation of their flavonoids and expression of flavonoid-related genes and further explore new novel transcription factor (TF). Ultra-high-performance liquid chromatography and VION ion mobility quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF-MS) were used to determine the flavonoids. Combined with transcriptome sequencing technology, the molecular mechanism of the flavonoid metabolism difference in Freesia was revealed. A total of 10 anthoxanthin components and 12 anthocyanin components were detected using UPLC-Q-TOF-MS. All six common anthocyanin aglycones in high plants, including cyanidin, delphinidin, petunidin, peonidin, malvidin, and pelargonidin, were detected in Freesia at first time in this study. In orange, yellow, and white cultivars, anthoxanthins gradually decreased with the opening of the petals, while in red and purple cultivars, anthoxanthins first increased and then decreased. No anthocyanin was detected in yellow and white cultivars, while anthocyanins increased with the opening of the petals and reached their maximum at the flowering stage (S3) in other three cultivars. The correlation analysis revealed that the color of Freesia petals was closely related to the composition and content of anthoxanthins and anthocyanins. Petals of five cultivars at S3 were then selected for transcriptome sequencing by using the Illumina Hiseq 4000 platform, and a total of 100,539 unigenes were obtained. There were totally 5,162 differentially expressed genes (DEGs) when the four colored cultivars were compared with the white cultivar at S3. Comparing all DEGs with gene ontology (GO), KEGG, and Pfam databases, it was found that the genes involved in the flavonoid biosynthesis pathway were significantly different. In addition, AP2, WRKY, and bHLH TF families ranked the top three among all differently expressed TFs in all DEGs. Quantitative real-time PCR (qRT-PCR) technology was used to analyze the expression patterns of the structural genes of flavonoid biosynthesis pathway in Freesia. The results showed that metabolic process was affected significantly by structural genes in this pathway, such as CHS1, CHI2, DFR1, ANS1, 3GT1, and FLS1. Cluster analysis was performed by using all annotated WRKY and AP2 TFs and the above structural genes based on their relatively expression. Four novel candidate TFs of WRKY and AP2 family were screened. Their spatiotemporal expression patterns revealed that these four novel TFs may participate in the regulation of the flavonoid biosynthesis, thus controlling its color formation in Freesia petals.


2019 ◽  
Vol 20 (20) ◽  
pp. 5123 ◽  
Author(s):  
Yuan Zong ◽  
Shiming Li ◽  
Xinyuan Xi ◽  
Dong Cao ◽  
Zhong Wang ◽  
...  

Overexpression of R2R3-MYB transcriptor can induce up-expression of anthocyanin biosynthesis structural genes, and improve the anthocyanin content in plant tissues, but it is not clear whether the MYB transcription factor overexpression does effect on other genes transcript and chemical compounds accumulation. In this manuscript, RNA-sequencing and the stepwise multiple ion monitoring-enhanced product ions (stepwise MIM-EPI) strategy were employed to evaluate the comprehensive effect of the MYB transcription factor LrAN2 in tobacco. Overexpression of LrAN2 could promote anthocyanin accumulation in a lot of tissues of tobacco cultivar Samsun. Only 185 unigenes express differently in a total of 160,965 unigenes in leaves, and 224 chemical compounds were differently accumulated. Three anthocyanins, apigeninidin chloride, pelargonidin 3-O-beta-D-glucoside and cyanidin 3,5-O-diglucoside, were detected only in transgenic lines, which could explain the phenotype of purple leaves. Except for anthocyanins, the phenylpropanoid, polyphenol (catechin), flavonoid, flavone and flavonol, belong to the same subgroups of flavonoids biosynthesis pathway with anthocyanin and were also up-accumulated. Overexpression of LrAN2 activated the bHLH (basic helix-loop-helix protein) transcription factor AN1b, relative to anthocyanin biosynthesis and the MYB transcription factor MYB3, relative to proanthocyanin biosynthesis. Then, the structural genes, relative to the phenylpropanoid pathway, were activated, which led to the up-accumulation of phenylpropanoid, polyphenol (catechin), flavonoid, flavone, flavonol and anthocyanin. The MYB transcription factor CPC, negative to anthocyanin biosynthesis, also induced up-expression in transgenic lines, which implied that a negative regulation mechanism existed in the anthocyanin biosynthesis pathway. The relative contents of all 19 differently accumulated amino and derivers were decreased in transgenic lines, which meant the phenylalanine biosynthesis pathway completed the same substrates with other amino acids. Interestingly, the acetylalkylglycerol acetylhydrolase was down-expressed in transgenic lines, which caused 19 lyso-phosphatidylcholine and derivatives of lipids to be up-accumulated, and 8 octodecane and derivatives were down-accumulated. This research will give more information about the function of MYB transcription factors on the anthocyanin biosynthesis and other chemical compounds and be of benefit to obtaining new plant cultivars with high anthocyanin content by biotechnology.


2019 ◽  
Vol 20 (20) ◽  
pp. 5228 ◽  
Author(s):  
Min Yu ◽  
Yuping Man ◽  
Yanchang Wang

The R2R3 MYB genes associated with the flavonoid/anthocyanidin pathway feature two repeats, and represent the most abundant classes of MYB genes in plants; however, the physiological role and regulatory function of most R2R3 MYBs remain poorly understood in kiwifruit (Actinidia). Here, genome-wide analysis identified 155 R2R3-MYBs in the ‘Red 5′ version of the Actinidia chinensis genome. Out of 36 anthocyanin-related AccR2R3-MYBs, AcMYB10 was the most highly expressed in inner pericarp of red-fleshed kiwifruit. The expression of AcMYB10 was highly correlated with anthocyanin accumulation in natural pigmentation during fruit ripening and light-/temperature-induced pigmentation in the callus. AcMYB10 is localized in the nuclei and has transcriptional activation activity. Overexpression of AcMYB10 elevates anthocyanin accumulation in transgenic A. chinensis. In comparison, A. chinensis fruit infiltrated with virus-induced gene silencing showed delayed red coloration, lower anthocyanin content, and lower expression of AcMYB10. The transient expression experiment in Nicotiana tabacum leaves and Actinidia arguta fruit indicated the interaction of AcMYB10 with AcbHLH42 might strongly activate anthocyanin biosynthesis by activating the transcription of AcLDOX and AcF3GT. In conclusion, this study provides novel molecular information about R2R3-MYBs in kiwifruit, advances our understanding of light- and temperature-induced anthocyanin accumulation, and demonstrates the important function of AcMYB10 in the biosynthesis of anthocyanin in kiwifruit.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Mei ◽  
Shihua Wan ◽  
Chuyuan Lin ◽  
Caibi Zhou ◽  
Liuhong Hu ◽  
...  

Tea (Camellia sinensis) flowers are normally white, even though the leaves could be purple. We previously discovered a specific variety with purple leaves and flowers. In the face of such a phenomenon, researchers usually focus on the mechanism of color formation but ignore the change of aroma. The purple tea flowers contain more anthocyanins, which belong to flavonoids. Meanwhile, phenylalanine (Phe), derived from the shikimate pathway, is a precursor for both flavonoids and volatile benzenoid–phenylpropanoids (BPs). Thus, it is not clear whether the BP aroma was attenuated for the appearance of purple color. In this study, we integrated metabolome and transcriptome of petals of two tea varieties, namely, Zijuan (ZJ) with white flowers and Baitang (BT) with purple flowers, to reveal the relationship between color (anthocyanins) and aroma (volatile BPs). The results indicated that in purple petals, the upstream shikimate pathway promoted for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) was elevated. Among the increased anthocyanins, delphinidin-3-O-glucoside (DpG) was extremely higher; volatile BPs, including benzyl aldehyde, benzyl alcohol, acetophenone (AP), 1-phenylethanol, and 2-phenylethanol, were also enhanced, and AP was largely elevated. The structural genes related to the biosynthesis of volatile BPs were induced, while the whole flavonoid biosynthesis pathway was downregulated, except for the genes flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H), which were highly expressed to shift the carbon flux to delphinidin, which was then conjugated to glucoside by increased bronze-1 (BZ1) (UDP-glucose: flavonoid 3-O-glucosyltransferase) to form DpG. Transcription factors (TFs) highly related to AP and DpG were selected to investigate their correlation with the differentially expressed structural genes. TFs, such as MYB, AP2/ERF, bZIP, TCP, and GATA, were dramatically expressed and focused on the regulation of genes in the upstream synthesis of Phe (DAHPS; arogenate dehydratase/prephenatedehydratase) and the synthesis of AP (phenylacetaldehyde reductase; short-chain dehydrogenase/reductase), Dp (F3′H; F3′5′H), and DpG (BZ1), but inhibited the formation of flavones (flavonol synthase) and catechins (leucoanthocyanidin reductase). These results discovered an unexpected promotion of volatile BPs in purple tea flowers and extended our understanding of the relationship between the BP-type color and aroma in the tea plant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ning Jia ◽  
Jingjing Wang ◽  
Yajuan Wang ◽  
Wei Ye ◽  
Jiameng Liu ◽  
...  

Dendrobium candidum is used as a traditional Chinese medicine and as a raw material in functional foods. D. candidum stems are green or red, and red stems are richer in anthocyanins. Light is an important environmental factor that induces anthocyanin accumulation in D. candidum. However, the underlying molecular mechanisms have not been fully unraveled. In this study, we exposed D. candidum seedlings to two different light intensities and found that strong light increased the anthocyanin content and the expression of genes involved in anthocyanin biosynthesis. Through transcriptome profiling and expression analysis, we identified a WD40-repeat transcription factor, DcTTG1, whose expression is induced by light. Yeast one-hybrid assays showed that DcTTG1 binds to the promoters of DcCHS2, DcCHI, DcF3H, and DcF3′H, and a transient GUS activity assay indicated that DcTTG1 can induce their expression. In addition, DcTTG1 complemented the anthocyanin deficiency phenotype of the Arabidopsis thaliana ttg1-13 mutant. Collectively, our results suggest that light promotes anthocyanin accumulation in D. candidum seedlings via the upregulation of DcTTG1, which induces anthocyanin synthesis-related gene expression.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 886F-886
Author(s):  
Chen-Yi Hung ◽  
Cindy B.S. Tong ◽  
John R. Murray

The color of red potatoes is due to an accumulation of anthocyanins in periderm tissues. The objective of this study was to examine the effect of several factors on tuber redness. Using the red tuber-producing S. tuberosum ssp. tuberosum cultivar Norland, we observed that chroma (intensity of redness) and anthocyanin content of greenhouse-grown tubers decreased as tuber weight increased. There was a slight or no increase in hue (tint). We used HPLC to determine that pelargonidin and peonidin are the major anthocyanidins (aglycones of anthocyanins) in tuber periderm. The ratio of pelargonidin to peonidin increased as tuber weight increased up to 25 g fresh weight. The decrease in chroma was not due to an increase in cell sap pH; we observed a decrease in cellular pH as tuber weight increased. Controlled-atmosphere storage had no effect on tuber chroma or anthocyanin content compared to air storage. Methyl jasmonate, sucrose, or light treatment did not increase anthocyanin accumulation. Tubers exposed to light had less anthocyanin than those kept in the dark. We are examining the developmental expression of anthocyanin biosynthetic genes, as well as the effect of maize transcription factors on anthocyanin synthesis, in tuber periderm.


Sign in / Sign up

Export Citation Format

Share Document