Postharvest organic matter removal effects on FH layer and mineral soil characteristics in four New Zealand Pinus radiata plantations

2008 ◽  
Vol 256 (4) ◽  
pp. 558-563 ◽  
Author(s):  
Simeon J. Smaill ◽  
P.W. Clinton ◽  
L.G. Greenfield
2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


2004 ◽  
Vol 34 (5) ◽  
pp. 1136-1149 ◽  
Author(s):  
Jeffrey P Battigelli ◽  
John R Spence ◽  
David W Langor ◽  
Shannon M Berch

This study examines the short-term impact of forest soil compaction and organic matter removal on soil mesofauna, in general, and oribatid mite species, in particular. Both soil compaction and organic matter removal reduced the density of soil mesofauna. Stem-only harvesting reduced total mesofauna densities by 20% relative to uncut forest values. A combination of whole-tree harvest and forest floor removal with heavy soil compaction significantly reduced total soil mesofauna densities by 93% relative to the uncut forest control. Removal of the forest floor represents a substantial loss of habitat for most soil mesofauna. The forest floor apparently buffered the mineral soil by limiting both the impact of soil compaction and fluctuations in soil temperature and moisture. The relative abundance of Prostigmata and Mesostigmata increased with treatment severity, whereas that of Oribatida decreased. Species richness of the oribatid mite fauna was reduced as the severity of treatments increased. The number of rare oribatid species (those representing <1% of the total oribatid mite sample) decreased by 40% or more relative to the uncut forest control. Evenness also decreased as treatment severity increased. Oppiella nova and Suctobelbella sp. near acutidens were the dominant oribatid species in both the forest floor and mineral soil, regardless of treatment. Soil compaction and organic matter removal significantly impacted the density and diversity of soil mesofauna and oribatid mite fauna in the short term at these study sites.


Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 165 ◽  
Author(s):  
GR Davis ◽  
WA Neilsen ◽  
JG Mcdavitt

Root distribution of Pinus radiata was studied on five diverse soils. Root concentration to 80 cm was most closely correlated with soil organic matter content. Considerable differences in the proportion of roots at different depths were found.


2001 ◽  
Vol 31 (5) ◽  
pp. 889-898 ◽  
Author(s):  
J Clive Carlyle ◽  
EK Sadanandan Nambiar

We examined the relationship between net nitrogen (N) mineralization (subsequently termed N mineralization) in the forest floor and mineral soil (0–0.15 m) of 20 Pinus radiata D. Don plantations ranging in age from 23 to 59 years, how mineralization was influenced by soil properties, and its relationship to wood production. Forest floor properties had a narrower relative range than the same set of mineral soil properties. Total N in the litter layer was 5.0–9.5 g·kg–1 compared with 0.23–2.53 g·kg–1 in mineral soil. Laboratory rates of net N mineralization ranged between 1.1 and 9.7 mg·kg–1·day–1 in forest floor and between 0.02 and 0.53 mg·kg–1·day–1 in mineral soil. The range in litter lignin (35.3–48.0%) was especially narrow, despite the large range in stand productivity. Nitrogen mineralized in the forest floor was not correlated with any of the measured forest floor or mineral soil properties. Nitrogen mineralized per unit mineral soil N (ksn) was negatively correlated with the mineral soil N to organic phosphorus ratio (N/Po) (r2 = 0.82). In mineral soil a relationship combining N/Po and total N concentration explained 90% of the variation in N mineralized. Nitrogen mineralized in the forest floor was correlated with that mineralized in the mineral soil when expressed per unit C or N (r2 = 0.54 or 0.57, respectively). Thus, the quality of organic matter in the forest floor partly reflected the quality of organic matter in the mineral soil with respect to N mineralization. Mineralization in mineral soil dominated the net N available to the stand. For sandy soils, wood production (m3·ha–1·year–1) was correlated with N mineralized in the forest floor + mineral soil (r2 = 0.71). In P. radiata stands growing in southern Australia, rates of wood production per unit N mineralized and per unit rainfall appear to be substantially higher than those of a wide range of natural and planted stands in North America.


Soil Research ◽  
2006 ◽  
Vol 44 (2) ◽  
pp. 85 ◽  
Author(s):  
Neal A. Scott ◽  
Kevin R. Tate ◽  
Des J. Ross ◽  
Aroon Parshotam

Since 1992, afforestation with Pinus radiata D. Don in New Zealand has led to the establishment of over 600 000 ha of new plantation forests, about 85% of which are on fertile pastures used previously for grazing sheep and cattle. While this leads to rapid accumulation of carbon (C) in vegetation, the effects of afforestation on soil C are poorly understood. We examined key soil C cycling processes at the (former) Tikitere agroforestry experimental site near Rotorua, New Zealand. In 1973, replicated stands of P. radiata (100 and 400 stems/ha) were established on pastures, while replicated pasture plots were maintained throughout the first 26-year rotation. In 1996, soil C and microbial biomass C in 0–0.10 m depth soil, in situ soil respiration and net N mineralisation, and soil temperature were lower in the forest than in the pasture, and tended to decline with increasing tree-stocking density. In the 400 stems/ha stands, mineral soil C (0–0.50 m depth) was lower than in the pasture (104 and 126 Mg C/ha, respectively; P < 0.01). Carbon accumulation in the forest floor during the first rotation of these forest stands was 12 Mg C/ha. Using the Rothamsted soil C model (Roth-C), we examined how changes in plant C inputs following afforestation might lead to changes in soil C content to 0.30 m depth. Steady-state pasture inputs of 9.0 Mg C/ha.year were estimated using Roth-C; these C inputs were assumed to decrease linearly during the first 12 years following tree establishment (until canopy closure). Below-ground C inputs in the forest were estimated using steady-state relationships between litterfall and soil respiration; these inputs were assumed to increase linearly between years 1 and 12, after which they remained constant at 1.53 Mg C/ha.year until harvest. Measured changes in soil C (0−0.30 m) during the first rotation, in conjunction with the below-ground inputs, were used to estimate above-ground inputs (as a proportion of total litterfall [3.81 Mg C/ha.year]) to the soil. Our results suggest 10% of litterfall C over one rotation actually entered the mineral soil. Using these results and estimates of additional C inputs to the soil from harvest slash and weeds following harvest, we found mineral-soil C stocks would continue to decline during second and third rotations of P. radiata; the magnitude of this decline depended in part on how much slash enters the mineral soil matrix. We confirmed our modelling approach by simulating soil C changes to within 8% over 19 years following afforestation of pasture at another previously studied site, Purukohukohu. Whether afforestation leads to an increase or decrease in mineral-soil C may depend on previous pasture management; in highly productive pastures, high C inputs to the soil may maintain soil C at levels that cannot be sustained when trees are planted onto these grasslands.


2004 ◽  
Vol 84 (2) ◽  
pp. 159-167 ◽  
Author(s):  
J. M. Kranabetter ◽  
B. K. Chapman

The release of nutrients from a standard litter is often assumed to be solely a function of its decomposition rate. We tested whether nitrogen release would also be influenced by soil attributes affected by disturbance, such as interactions with soil microflora. Changes in nitrogen contents of decaying litter (Populus balsamifera) were compared across soil compaction and organic matter removal treatments in central British Columbia, using artificial materials to isolate litter bags from contact with forest floors or mineral soil. After 30 mo, nitrogen content of litter was only slightly higher on artificial soils than actual soils, suggesting that most nitrogen had been lost by leaching. A significant interaction, however, was detected in leaf nitrogen content between organic matter removal and soil compaction treatments that was not found on the artificial soils. This difference in nitrogen release led to a range in C:N ratios of 28 to 32 (from an initial C:N ratio of 52) for leaves at 1.5 g (70% mass loss). The differences in nitrogen release were relatively small and will perhaps be less important than other effects of soil disturbance (such as changes in litter quality) on nitrogen cycling. Key words: Nitrogen, decomposition, litter bag, translocation, compaction, forest floors


2006 ◽  
Vol 36 (3) ◽  
pp. 565-576 ◽  
Author(s):  
Felipe G Sanchez ◽  
Allan E Tiarks ◽  
J Marty Kranabetter ◽  
Deborah S Page-Dumroese ◽  
Robert F Powers ◽  
...  

This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts) that are part of the Long-Term Soil Productivity (LTSP) network and were established over 5 years ago. The sites cover a broad range of soil types, climatic conditions, and tree species. Most sites showed increased soil C and N levels 5 years after study establishment; however, the rate and magnitude of the changes varied between sites. Organic matter removal, compaction, or competition control did not significantly affect soil C and N contents at any site, except for the Northern Rocky Mountain site, where competition control significantly affected soil C and N contents. The observation that, after 5 years, the soil C and N contents were not negatively affected by even the extreme treatments demonstrates the high resiliency of the soil, at least in the short term, to forest management perturbations.


2000 ◽  
Vol 42 (9) ◽  
pp. 195-201 ◽  
Author(s):  
P. Andreasen ◽  
P. B. Mortensen ◽  
A. Stubsgaard ◽  
B. Langdahl

The stabilisation of a sludge-mineral soil mixture and a method to evaluate the state of stabilisation were investigated. The organic matter and nitrogen content are reduced up to 50% during a stabilisation process of three months under Danish climatic conditions. The stabilisation was shown to be an aerobic process limited by oxygen transport within the mixture. The degree of stabilisation was evaluated by oxygen consumption in a water suspension and the results showed that a stable product was achieved when oxygen consumption was stable and in the level of natural occurring aerobic soils (0.1 mgO2/(g DS*hr). The study thereby demonstrates that a stability of a growth media can be controlled by the oxygen consumption method tested.


Sign in / Sign up

Export Citation Format

Share Document