Mammalian responses to windrows of woody debris on clearcuts: Abundance and diversity of forest-floor small mammals and presence of small mustelids

2017 ◽  
Vol 399 ◽  
pp. 143-154 ◽  
Author(s):  
Thomas P. Sullivan ◽  
Druscilla S. Sullivan ◽  
J. Hazel-rah Sullivan
2014 ◽  
Vol 41 (3) ◽  
pp. 212 ◽  
Author(s):  
Thomas P. Sullivan ◽  
Druscilla S. Sullivan

Context Southern red-backed voles (Myodes gapperi) disappear from clearcuts within the first year or two after harvest, at least in studies in coniferous and mixed forests of western North America. Post-harvest woody debris arranged in large piles and windrows supports populations of M. gapperi on clearcuts and may extend their persistence there. Aims To test the hypotheses (H) that for M. gapperi, (H1) population parameters of abundance, reproduction, and survival would be higher in windrow–forest than isolated windrow sites, and higher or similar to those in interior old forest sites; (H2) connectivity provided by windrow-forest structures will mitigate potential negative effects of clearcuts and abundance of M. gapperi will remain similar at the abrupt edge between forest and new clearcuts; and (H3) connectivity provided by windrow–forest structures will allow increased movements between both habitats. Methods Study areas were located in three forest ecological zones in southern British Columbia, Canada. Populations of M. gapperi were sampled from 2010 to 2012 in three types of habitats on new clearcuts: isolated windrows of woody debris, windrows attached to uncut old forest, and in uncut old forest. Key results Higher mean values of abundance and number of juvenile recruits of M. gapperi in the isolated windrow and windrow–forest sites than forest sites was contrary to our prediction for H1. In support of H2, we could not detect any differences in the mean number of captures among forest, edge and windrow sections of the windrow–forest sites, nor in the mean range length among the three habitat types. For H3, connectivity provided by windrow–forest structures may mitigate potential negative effects on abundance for M. gapperi at the abrupt edge between forest and new clearcuts. Conclusions and Implications Voles did not commonly move between the forest and windrow habitats, but did move readily within forest and within windrows. Substantial movement by M. gapperi within windrows suggested that this microtine will move along windrows and potentially use these paths of connectivity to cross clearcuts. If the prey base is present, windrow connectivity may enhance these open areas for small mustelids and other carnivores and help maintain abundance and diversity of some forest mammals on clearcuts.


1993 ◽  
Vol 23 (6) ◽  
pp. 1052-1059 ◽  
Author(s):  
Rodney J. Keenan ◽  
Cindy E. Prescott ◽  
J.P. Hamish Kimmins

Biomass and C, N, P, and K contents of woody debris and the forest floor were surveyed in adjacent stands of old-growth western red cedar (Thujaplicata Donn)–western hemlock (Tsugaheterophylla (Raf.) Sarg.) (CH type), and 85-year-old, windstorm-derived, second-growth western hemlock–amabilis fir (Abiesamabilis (Dougl.) Forbes) (HA type) at three sites on northern Vancouver Island. Carbon concentrations were relatively constant across all detrital categories (mean = 556.8 mg/g); concentrations of N and P generally increased, and K generally decreased, with increasing degree of decomposition. The mean mass of woody debris was 363 Mg/ha in the CH and 226 Mg/ha in the HA type. The mean forest floor mass was 280 Mg/ha in the CH and 211 Mg/ha in the HA stands. Approximately 60% of the forest floor mass in each forest type was decaying wood. Dead woody material above and within the forest floor represented a significant store of biomass and nutrients in both forest types, containing 82% of the aboveground detrital biomass, 51–59% of the N, and 58–61% of the detrital P. Forest floors in the CH and HA types contained similar total quantities of N, suggesting that the lower N availability in CH forests is not caused by greater immobilization in detritus. The large accumulation of forest floor and woody debris in this region is attributed to slow decomposition in the cool, wet climate, high rates of detrital input following windstorms, and the large size and decay resistance of western red cedar boles.


2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.


2011 ◽  
Vol 7 (4) ◽  
pp. 168-173 ◽  
Author(s):  
A-Ram Yang ◽  
Nam Jin Noh ◽  
Sue Kyoung Lee ◽  
Tae Kyung Yoon ◽  
Choonsig Kim ◽  
...  

2015 ◽  
Vol 55 (3) ◽  
pp. 301-311 ◽  
Author(s):  
Monika Małecka ◽  
Hanna Kwaśna ◽  
Wojciech Szewczyk

AbstractScots pine sawdust, composted bark or coarse, post-harvest woody debris from conifers had been spread over the surface of barren forest soil before planting with Scots pine. The effects of the Scots pine sawdust, composted bark or coarse, post-harvest woody debris from conifers on the abundance and diversity of culturable fungi were investigated. The amendments were aimed at increasing the soil suppressiveness toArmillariaandHeterobasidion.The classical soil-dilution method was chosen for qualitative and quantitative analyses of fungal communities in soils because of its proven reliability and consistency. The soil was inhabited by saprotrophic fungi from Ascomycota and Zygomycota, including species known to be potential antagonists ofArmillariaorH. annosum(i.e.Clonostachys + Trichodermaspp.,Penicillium commune, P. daleae,P. janczewskii) or stimulants ofArmillaria(i.e.Pseudogymnoascus roseus,Trichocladium opacum). Eleven years after treatment, the abundance and diversity of fungi, the abundance ofP. commune, and locally the abundance ofP. janczewskiiincreased, whileClonostachys + Trichodermaspp., and locally,P. daleaeandT. opacumdecreased. Amending the barren soil with organic matter does not guarantee effective, long-term suppressiveness of the sandy loam soil toArmillariaandHeterobasidion.Increased abundance of entomopathogenic and nematophagous species, 11 years after treatment, does suggest the long-term possibility of insect or nematode control in soil.


1994 ◽  
Vol 24 (7) ◽  
pp. 1317-1329 ◽  
Author(s):  
Brian C. McCarthy ◽  
Ronald R. Bailey

Coarse woody debris (CWD) is integral to the functioning and productivity of forested ecosystems. Standing snags and large logs on the forest floor affect soil processes, soil fertility, hydrology, and wildlife microhabitat. Few data are available pertaining to the distribution and abundance of CWD in the managed hardwood forests of the central Appalachians. We surveyed 11 stands, at various stages of development (succession) after clear-cutting (<2, 15–25, 65–90, >100 years old), to evaluate the density, volume, and biomass of trees, snags, and logs under the local forest management regime. As expected, density, volume, and biomass of CWD (stems ≥2.5 cm diameter) were greatest in young stands (<2 years old) immediately following clear-cutting; the vast majority of CWD existed as relatively labile, small-diameter, low decay state logging slash. Young stands retained a few large logs in advanced decay states but observations suggest that these elements were often disturbed (i.e., crushed) by logging equipment during the harvest process. Crushed logs do not function ecologically in the same capacity as large intact logs. A marked decline in CWD was observed in young pole stands (15–25 years old) as slash decomposed. These stands were characterized by a high density of young hardwood stump sprouts in the overstory while maintaining a moderate amount of CWD in middle size and decay states on the forest floor. More mature hardwood stands (65–90 years old) generally exhibited a decrease in live-stem density and an increase in basal area, accompanied by a slight increase in CWD. Commercial thinning presumably limits the contribution of large CWD to the forest floor. This was most clearly evident in the oldest stands (>100 years old) where large CWD was not widely observed. A striking feature across all stands was the near absence of logs in large size classes (>65 cm diameter) and a paucity of logs in mid to late decay stages. We discuss our data in the context of hardwood forest structure and management in the central Appalachians.


2006 ◽  
Vol 15 (4) ◽  
pp. 479 ◽  
Author(s):  
John B. Graham ◽  
Brian C. McCarthy

Silvicultural treatments alter fuel dynamics in forested systems, which may alter fire regime. Effects of thinning and prescribed fire on forest-floor fuels were studied in mixed-oak forests of south-eastern Ohio to examine fuel dynamics over time. Fuel characteristics were measured before, immediately after, and 3 years following fire and thinning treatments along 20-m transects (n = 432) following Brown’s planar intersect method. Measurements were taken to determine litter, duff, 1-h, 10-h, 100-h, and 1000-h sound (1000S) or rotten (1000R) fuel mass. Coarse woody debris (CWD) was sampled on 432 additional 80-m2 belt-transects. Repeated-measures analysis of variance with post-hoc Bonferonni comparisons was used to analyse the change in the fuels over time. The specific effects of silvicultural treatments varied over time with changes in larger, sound fuels (1000S and CWD) persisting longer than changes to finer (litter, duff, 1-h, 10-h, and 100-h) or less-sound (1000R) fuels, which appear to be more transient. Unlike in western North America where fuels accumulate over time, decomposition and productivity appear comparable in eastern mixed-oak forests. Aside from their impact on decomposition or productivity rates, silvicultural treatments appear to have little impact on fine-fuel loading in these systems.


2008 ◽  
Vol 24 (05) ◽  
pp. 563-567 ◽  
Author(s):  
Luiz Gustavo R. Oliveira-Santos ◽  
Marcos A. Tortato ◽  
Maurício E. Graipel

Even though the great majority of the biomass and diversity of mammals in tropical forests inhabit the canopy (Eisenberg &amp; Thorington 1973), most knowledge of this group is based on forest-floor samples (Lowman &amp; Moffett 1993). Studies that include trapping efforts in the canopy are becoming increasingly common (Grelle 2003, Lambertet al. 2005, Malcolm 1995, Pattonet al. 2000, Vieira &amp; Monteiro-Filho 2003, Vosset al. 2001), but aspects on the ecology of arboreal small mammals still remain poorly understood. Many species of non-flying mammals co-occur in the canopy and, thus, are expected to use niche dimensions differently to permit coexistence (Cameronet al. 1979). Despite the difficulties of access to and in understanding the three-dimensional use of the arboreal strata by the different species (Emmons 1995), some studies have demonstrated that the differential use of the habitat (Cunha &amp; Vieira 2002, Gentile &amp; Fernandez 1999), of food items (Cácereset al. 2002, Santoriet al. 1995) or both (Leiteet al. 1996, Mauffrey &amp; Catzeflis 2003), include strategies involved in the division of resources.


Sign in / Sign up

Export Citation Format

Share Document