Methane number measurements of hydrogen/carbon monoxide mixtures diluted with carbon dioxide for syngas spark ignited internal combustion engine applications

Fuel ◽  
2019 ◽  
Vol 236 ◽  
pp. 535-543 ◽  
Author(s):  
German J. Amador Diaz ◽  
Lesme M. Corredor Martinez ◽  
Juan P. Gomez Montoya ◽  
Daniel B. Olsen
2013 ◽  
Vol 597 ◽  
pp. 185-192 ◽  
Author(s):  
Jacek Kropiwnicki ◽  
Zbigniew Kneba

Operating fuel consumption increases significantly when the vehicle stops frequently while driving or when the engine is idling during braking. In such cases, the internal combustion engine consumes the fuel but the mechanical energy is not used by the drive system. The amount of fuel that is consumed in this time by the engine can potentially be saved if the car is equipped with a Stop-Start system. Start-Stop system automatically shuts down and restarts the internal combustion engine due to strategy used by controller reducing this way toxic compounds emissions in exhaust gasses and the fuel consumption, which is directly connected to carbon dioxide (CO2) emissions. The paper presents an analysis of the potential reduction in CO2 emissions for selected vehicles with Start-Stop system during operation in selected urban agglomeration using different strategies to control this system. The study was carried out using numerical models of propulsion systems. The results were compared with the statistical data derived from regular use of vehicles equipped with such a system.


Author(s):  
Jorge Duarte Forero ◽  
German Amador Diaz ◽  
Jesus Garcia Garcia ◽  
Marco San Juan Mejia ◽  
Lesme Corredor Martinez

In this paper, a thermodynamic model of a spark ignition internal combustion engine fueled with natural gas is developed in order to estimate the air-fuel-unburned gas temperature at before top dead center (BTDC). This temperature is used as controlled variable in a control loop in order to avoid the autoignition phenomena when the engine operates with a fuel with different methane number from the methane number requirement of the engine. The model formulation is based on a polytropic compression proccess whose coefficient was determined experimentally in a turbocharged internal combustion engine fueled with natural gas. To make feasible the use of differents gaseous fuels from natural gas, it was necessary to design two control strategies to avoid the knocking phenomenon and choose the best one. The ambient temperature is the disturbance considered, whose changes are significant in different places in the world. The first control strategy that was implemented is called “Robust”, which employs a conventional feedback control loop with a robust controller which is designed. The response of this control loop is compared to the response of the second control strategy called “Feedforward control”. The results obtained reveals that Feedforward control strategy has better performance than robust control strategy for this application. The control strategy and the model proposed will allow increase the range of application of gaseous fuels with low methane number (MN) leading to guarantee a safe running in internal combustion engines that currently are fueled with natural gas.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110402
Author(s):  
Shijun Fu ◽  
Hongji Fu

Introduction: Although forecasting electric vehicles’ growth in China was frequently reported in the literature, predicting electric vehicles market penetration as well as corresponding energy saving and carbon dioxide mitigation potential in a more suitable method is not well understood. Methods: This study chose the double species model to predict electric vehicles’ growth trajectory under mutually competitive conditions between electric vehicles and internal combustion engine vehicles. For comparison, it set two scenarios: with 200 and 300 vehicles per thousand persons at 2050. To give details on energy saving and carbon dioxide mitigation potential induced by electric vehicles’ market penetration, it further divided electric vehicles into five subgroups and internal combustion engine vehicles into seven subgroups, therein forming respective measurement formulas. Results: This paper solved the double species model and thus got its analytical formula. Then it employed the analytical formula to conduct an empirical study on electric vehicles market penetration in China from year 2010 to 2050. Under scenario 300, electric vehicles growth trajectory will emerge a quick growth stage during 2021–2035, thereafter keeping near invariant till 2050. Meanwhile, current internal combustion engine vehicles’ quick growth will continue up to 2027, then holding constant during 2028–2040, afterwards following a 10-year slowdown period. Scenario 200 has similar features, but a 2-year delay for electric vehicles and a 5-year lead time for internal combustion engine vehicles were found. On average, scenario 300 will save 114.4 Mt oil and 111.5 Mt carbon dioxide emissions, and scenario 200 will save 77.1 Mt oil and 73.4 Mt carbon dioxide emissions each year. Beyond 2032, annual 50.0% of road transport consumed oil and 18.6% of carbon dioxide emissions from this sector will be saved under scenario 300. Discussion: Compared with scenario 200, scenario 300 was more suitable to predict electric vehicle market penetration in China. In the short-term electric vehicle penetration only brings about trivial effects, while in the long-term it will contribute a lot to both energy security and carbon dioxide mitigation. The contribution of this article provided a more suitable methodology for predicting electric vehicle market penetration, simulated two coupled trajectories of electric vehicles and internal combustion engine vehicles, and discussed relative energy-saving and climate effects from 2010 to 2050.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Shunsen Wang ◽  
Kunlun Bai ◽  
Yonghui Xie ◽  
Juan Di ◽  
Shangfang Cheng

A novel thermodynamic system is proposed to recover the waste heat of an internal combustion engine (ICE) by integrating the transcritical carbon dioxide (CO2) refrigeration cycle with the supercritical CO2power cycle, and eight kinds of integration schemes are developed. The key parameters of the system are optimized through a genetic algorithm to achieve optimum matching with different variables and schemes, as well as the maximum net power output (Wnet). The results indicate that replacing a single-turbine scheme with a double-turbine scheme can significantly enhance the net power output (Wnet) and lower the inlet pressure of the power turbine (P4). With the same exhaust parameters of ICE, the maximumWnetof the double-turbines scheme is 40%–50% higher than that of the single-turbine scheme. Replacing a single-stage compression scheme with a double-stage compression scheme can also lower the value ofP4, while it could not always significantly enhance the value ofWnet. Except for the power consumption of air conditioning, the net power output of this thermodynamic system can reach up to 13%–35% of the engine power when it is used to recover the exhaust heat of internal combustion engines.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052017
Author(s):  
A V Egorov ◽  
Yu F Kaizer ◽  
A V Lysyannikov ◽  
R B Zhelukevich ◽  
A V Kuznetsov ◽  
...  

Abstract Reducing carbon dioxide emissions by passenger vehicles allows you to achieve the use of electric power plants and hybrid power plants made on the basis of thermal internal combustion engines and electric machines. However, the application of the above-mentioned approach for trucks is associated with significant difficulties due to the low specific capacity of the chemical current sources currently used. The recovery of braking energy of cargo vehicles in the pneumatic form is constrained by the need to achieve a high speed of switching on the pneumatic recuperator. In order to minimize the energy losses of the pneumatic recuperator during acceleration and steady-state. Without changing the design and reducing the reliability of the internal combustion engine, it is possible to supply air to its inlet at pressures not exceeding 350 kPa. When air is supplied to the internal combustion engine inlet at pressures of 200 and 300 kPa, it is possible to reduce specific carbon dioxide emissions by 16 and 37 % per unit of generated mechanical energy, respectively, compared to air supply under normal atmospheric conditions.


Sign in / Sign up

Export Citation Format

Share Document