Effect of interface elasticity on improved oil recovery in a carbonate rock from low salinity and ultra-low concentration demulsifier

Fuel ◽  
2020 ◽  
Vol 270 ◽  
pp. 117504 ◽  
Author(s):  
Hyeyoung Cho ◽  
Taniya Kar ◽  
Abbas Firoozabadi
AAPG Bulletin ◽  
2017 ◽  
Vol 101 (01) ◽  
pp. 1-18 ◽  
Author(s):  
Mark Person ◽  
John L. Wilson ◽  
Norman Morrow ◽  
Vincent E.A. Post

SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 55-73 ◽  
Author(s):  
Haishan Luo ◽  
Emad W. Al-Shalabi ◽  
Mojdeh Delshad ◽  
Krishna Panthi ◽  
Kamy Sepehrnoori

Summary The interest in modeling geochemical reactions has increased significantly for different improved-oil-recovery processes such as alkali/surfactant/polymer (ASP) flood, low-salinity waterflood, and ethylenediaminetetraacetic acid (EDTA) injection as a sacrificial agent in hard brine. Numerical simulation of multiphase flow coupled with geochemical reactions is challenging because of complex and coupled aqueous, aqueous/solid, and aqueous/oleic reactions. These reactions have significant impact upon oil recovery, and hence a robust geochemical simulator is important. UTCHEM (2000) is a chemical-flooding reservoir simulator with geochemical-modeling capability. Nevertheless, one major limitation in the geochemical-reactive engine of UTCHEM is assuming the activities of reactive species is equal to unity. In fact, the activity coefficients are strongly nonlinear functions of the ionic strength of solution. One approach to tackle this deficiency was to couple UTCHEM (flow and transport) with IPhreeqc (a geochemical reactive engine) (Kazemi Nia Korrani et al. 2013). However, the simulator proved to be computationally expensive. Therefore, it is desirable to improve the geochemical- reactive engine within UTCHEM. This paper presents the improvement of the geochemical-reactive engine in UTCHEM including implementing different activity-coefficient models for different reactive species, cation-exchange reactions, and numerical convergence. Certain unknown concentrations are eliminated from the elemental mass-balance equations and the reaction equations to reduce the computational burden. The Jacobian matrix and right-hand side of the linear-system equation in the Newton-Raphson method are updated accordingly in the Newton-Raphson method for performing the batch-reaction calculation. A low-salinity-waterflood case is presented to validate the updated UTCHEM against PHREEQC (Parkhurst and Appelo 1999) and UTCHEM-IPhreeqc. The simulation studies indicated that the updated geochemical simulator succeeds in tackling the inaccuracy concerned in the original UTCHEM. Also, the updated version is more efficient compared with PHREEQC and UTCHEM-IPhreeqc with the same degree of accuracy. The updated geochemical simulator is then applied to model an ASP coreflood in which EDTA is used as a sacrificial agent to chelate calcium and magnesium ions. The experimental data of pH, oil recovery, and pressure drop were successfully history matched with predictions of the effluent concentrations of calcium and magnesium ions. A synthetic 3D ASP pilot case is successfully simulated considering effects of acid equilibrium reaction constant on oil recovery.


2021 ◽  
pp. 1-18
Author(s):  
Takaaki Uetani ◽  
Hiromi Kaido ◽  
Hideharu Yonebayashi

Summary Low-salinity water (LSW) flooding is an attractive enhanced oil recovery (EOR) option, but its mechanism leading to EOR is poorly understood, especially in carbonate rock. In this paper, we investigate the main reason behind two tertiary LSW coreflood tests that failed to demonstrate promising EOR response in reservoir carbonate rock; additional oil recovery factors by the LSW injection were only +2% and +4% oil initially in place. We suspected either the oil composition (lack of acid content) or the recovery mode (tertiary mode) was inappropriate. Therefore, we repeated the experiments using an acid-enriched oil sample and injected LSW in the secondary mode. The result showed that the low-salinity effect was substantially enhanced; the additional oil recovery factor by the tertiary LSW injection jumped to +23%. Moreover, it was also found that the secondary LSW injection was more efficient than the tertiary LSW injection, especially in the acid-enriched oil reservoir. In summary, it was concluded that the total acid number (TAN) and the recovery mode appear to be the key successful factors for LSW in our carbonate system. To support the conclusion, we also performed contact angle measurement and spontaneous imbibition tests to investigate the influence of acid enrichment on wettability, and moreover, LSW injection on wettability alteration.


2021 ◽  
Author(s):  
Taniya Kar ◽  
Abbas Firoozabadi

Abstract Improved oil recovery in carbonate rocks through modified injection brine has been investigated extensively in recent years. Examples include low salinity waterflooding and surfactant injection for the purpose of residual oil reduction. Polymer addition to injection water for improvement of sweep efficiency enjoys field success. The effect of low salinity waterflooding is often marginal and it may even decrease recovery compared to seawater flooding. Polymer and surfactant injection are often effective (except at very high salinities and temperatures) but concentrations in the range of 5000 to 10000 ppm may make the processes expensive. We have recently suggested the idea of ultra-low concentration of surfactants at 100 ppm to decrease residual oil saturation from increased brine-oil interfacial elasticity. In this work, we investigate the synergistic effects of polymer injection for sweep efficiency and the surfactant for interfacial elasticity modification. The combined formulation achieves both sweep efficiency and residual oil reduction. A series of coreflood tests is performed on a carbonate rock using three crude oils and various injection brines: seawater and formation water with added surfactant and polymer. Both the surfactant and polymer are found to improve recovery at breakthrough via increase in oil-brine interfacial elasticity and injection brine viscosification, respectively. The synergy of surfactant and polymer mixed with seawater leads to higher viscosity and higher oil recovery. The overall oil recovery is found to be a strong function of oil-brine interfacial viscoelasticity with and without the surfactant and polymer in sea water and connate water injection.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Tinuola Udoh ◽  
Jan Vinogradov

In this study, we have investigated the effects of brine and biosurfactant compositions on crude-oil-rock-brine interactions, interfacial tension, zeta potential, and oil recovery. The results of this study show that reduced brine salinity does not cause significant change in IFT. However, addition of biosurfactants to both high and low salinity brines resulted in IFT reduction. Also, experimental results suggest that the zeta potential of high salinity formation brine-rock interface is positive, but oil-brine interface was found to be negatively charged for all solutions used in the study. When controlled salinity brine (CSB) with low salinity and CSB with biosurfactants were injected, both the oil-brine and rock-brine interfaces become negatively charged resulting in increased water-wetness and, hence, improved oil recovery. Addition of biosurfactants to CSB further increased electric double layer expansion which invariably resulted in increased electrostatic repulsion between rock-brine and oil-brine interfaces, but the corresponding incremental oil recovery was small compared with injection of low salinity brine alone. Moreover, we found that the effective zeta potential of crude oil-brine-rock systems is correlated with IFT. The results of this study are relevant to enhanced oil recovery in which controlled salinity waterflooding can be combined with injection of biosurfactants to improve oil recovery.


Sign in / Sign up

Export Citation Format

Share Document