Scrutiny of residual nitrogen content and different nozzle designs on NOx formation during oxy-fuel combustion of natural gas

Fuel ◽  
2020 ◽  
Vol 277 ◽  
pp. 118065 ◽  
Author(s):  
C. Schluckner ◽  
C. Gaber ◽  
M. Demuth ◽  
C. Hochenauer
Energy ◽  
2021 ◽  
Vol 223 ◽  
pp. 120021
Author(s):  
Donghee Kim ◽  
Won Yang ◽  
Kang Y. Huh ◽  
Youngjae Lee

2011 ◽  
Author(s):  
Julio C. C. Eg\ausquiza ◽  
Sergio L. Braga ◽  
Carlos V. M. Braga ◽  
Antonio C. S. Villela ◽  
Newton R. Moura

1940 ◽  
Vol 18c (4) ◽  
pp. 136-141 ◽  
Author(s):  
R. Newton ◽  
R. S. Young

Proximate analyses of roots (to plow depth) and stubble in one-, three-, and five-year-old sods, considered in relation to sequence effects as judged by the nitrogen absorption of the first two wheat crops after each age of sod, indicated the nitrogen content of the hay crop residues to be the dominant influence. Alfalfa was much superior to the grasses, a result apparently of the higher quantity of nitrogen returned to the soil and of the narrower C:N ratio in its residues. Timothy led the grasses, contributing the highest quantity of nitrogen in residues with the lowest percentage of crude fibre and the narrowest ratio of crude fibre to nitrogen-free extract. Brome contributed more residual nitrogen than western rye, but was slightly inferior in sequence effects.


Author(s):  
Huateng Yang ◽  
S. R. Krishnan ◽  
K. K. Srinivasan ◽  
K. Clark Midkiff

A sensitivity analysis of NOx formation in micro-pilot ignited natural gas dual fuel engines is performed based on a phenomenological combustion model. The model’s NOx formation mechanism incorporates a super-extended Zel’dovich mechanism (up to 43 reactions). The sensitivity analysis compares the contribution of each major reaction to NOx formation, and identifies the rate controlling NOx formation reactions. The formation rates for reactions involving NOx are also investigated to reveal the primary NOx formation paths. Results show that there are two main NOx formation paths both in the packets zone and the burned zone. The rate limiting reactions for the packets zone are identified as: O+N2=NO+NN2+HO2=NO+HNO Rate limiting reactions for the burned zone are: N2O+M=N2+O+MN2+HO2=NO+HNO Since the aforementioned reaction significantly influence the net NOx prediction, it is important that the corresponding reaction rates be determined fairly accurately. Finally, because the quasi-steady-state assumption is commonly used for certain species in NOx modeling, a transient relative error is estimated to evaluate its use. The relative error in NOx prediction with and without this assumption is of the order of 2 percent. Clearly, sensitivity analysis can provide valuable insight into understanding the possible NOx formation pathways in engines and improve the status of current prediction tools to obtain better estimates.


Author(s):  
Taylor F. Linker ◽  
Mark Patterson ◽  
Greg Beshouri ◽  
Abdullah U. Bajwa ◽  
Timothy J. Jacobs

Abstract The increased production of natural gas harvested from unconventional sources, such as shale, has led to fluctuations in the species composition of natural gas moving through pipelines. These variations alter the chemical properties of the bulk gas mixture and, consequently, affect the operation of pipeline compressor engines which use the gas as fuel. Among several possible ramifications of these variations is that of unacceptably high engine-out NOx emissions. Therefore, engine controller enhancements which can account for fuel variability are necessary for maintaining emissions compliance. Having the means to predict NOx emissions from a field engine can inform the development of such control schemes. There are several types of compressor engines; however, this study considers a large bore, lean-burn, two-stroke, integral compressor engine. This class of engine has unique operating conditions which make the formation of engine-out NOx different from typical automotive spark-ignited engines. For this reason, automotive-based methods for predicting NOx emissions are not sufficiently accurate. In this study, an investigation is performed on the possible NO and NO2 formation pathways which could be contributing to exhaust emissions. Additionally, a modeling method is proposed to predict engine-out NOx emissions using a 0-D/1-D model of a Cooper-Bessemer GMWH-10C compressor engine. Predictions are achieved with GRI-Mech3.0, a natural gas combustion mechanism, which allows for simulated formation of NOx species. The implemented technique is tuned using experimental data from a field engine to better predict emissions over a range of engine operating conditions. Tuning the model led to acceptable agreement across operating points varying in both load and trapped equivalence ratio.


Sign in / Sign up

Export Citation Format

Share Document