NO emission characteristic during fluidized combustion of biomass with limestone addition

Fuel ◽  
2021 ◽  
Vol 291 ◽  
pp. 120264
Author(s):  
Liu Xiaorui ◽  
Yang Xudong ◽  
Xie Guilin ◽  
Yu Yiming
2011 ◽  
Vol 80-81 ◽  
pp. 752-756
Author(s):  
You Hong Xiao ◽  
Pei Lin Zhou

This paper presented results of a study on emission characteristics of diesel engines. A numerical simulation model for a diesel engine was established by GT-POWER. Emission species studied include of NO, CO and HC. The developed model was validated by engine tests under laboratory condition. Based on the model, the simulation changing the variable parameters including injection timing, intake air temperature and EGR (exhaust gas recirculation) ratio were carried out to study their effect on emissions. The simulation results showed that with the decrease of CA BTDC, intake air temperature, compression ratio and EGR ratio respectively, the NO emission decreased. However, the CO and HC emissions increased.


2019 ◽  
Vol 13 (3) ◽  
pp. 5278-5293
Author(s):  
Vipul Patel ◽  
Rupesh Shah

The present research aims to analyse diffusion flame in a tube type burner with Liquefied petroleum gas (LPG) as a fuel. An experimental investigation is performed to study flame appearance, flame stability, Soot free length fraction (SFLF) and CO emission of LPG diffusion flame. Effects of varying air and fuel velocities are analysed to understand the physical process involved in combustion. SFLF is measured to estimate the reduction of soot. Stability limits of the diffusion flame are characterized by the blowoff velocity. Emission characteristic in terms of CO level is measured at different equivalence ratios. Experimental results show that the air and fuel velocity strongly influences the appearance of LPG diffusion flame. At a constant fuel velocity, blue zone increases and the luminous zone decreases with the increase in air velocity. It is observed that the SFLF increases with increasing air velocity at a constant fuel velocity. It is observed that the blowoff velocity of the diffusion flame increases as fuel velocity increases. Comparison of emission for flame with and without swirl indicates that swirl results in low emission of CO and higher flame stability. Swirler with 45° vanes achieved the lowest CO emission of 30 ppm at Φ = 1.3.


1988 ◽  
Vol 129 ◽  
pp. 27-28
Author(s):  
S. C. Unwin ◽  
R. J. Davis

We present a new high dynamic range map of the quasar 3C 273, made from observations with a VLBI network of 12 telescopes. This new map at 18 cm wavelength has one of the highest dynamic ranges yet achieved with VLBI, and it shows the ‘jet’ extending to at least 180 milliarcsec, or 330 pc from the nucleus of the quasar. Strong limits can be placed on the brightness of any ‘counter-jet’ on kiloparsec-scales, as no emission is visible on the opposite side of the ‘core’. Combining with other VLBI, VLA and MERLIN maps shows that the jet is visible and continuous over a very large range of scales, from 1 pc to 40 kpc.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2937 ◽  
Author(s):  
Huzhong Zhang ◽  
Detian Li ◽  
Peter Wurz ◽  
Yongjun Cheng ◽  
Yongjun Wang ◽  
...  

Titanium (Ti)-coated multiwall carbon nanotubes (CNTs) emitters based on the magnetron sputtering process are demonstrated, and the influences of modification to CNTs on the residual gas adsorption, gas desorption, and their field emission characteristic are discussed. Experimental results show that Ti nanoparticles are easily adsorbed on the surface of CNTs due to the “defects” produced by Ar+ irradiation pretreatment. X-ray photoelectron spectroscopy (XPS) characterization showed that Ti nanoparticles contribute to the adsorption of ambient molecules by changing the chemical bonding between C, Ti, and O. Field emission of CNTs coated with Ti nanoparticles agree well with the Fowler–Nordheim theory. The deviation of emission current under constant voltage is 6.3% and 8.6% for Ti-CNTs and pristine CNTs, respectively. The mass spectrometry analysis illustrated that Ti-coated CNTs have a better adsorption capacity at room temperature, as well as a lower outgassing effect than pristine CNTs after degassing in the process of field emission.


Sign in / Sign up

Export Citation Format

Share Document