Heterologous expression of an uncharacterized universal stress protein gene (SbUSP) from the extreme halophyte, Salicornia brachiata, which confers salt and osmotic tolerance to E. coli

Gene ◽  
2014 ◽  
Vol 536 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Pushpika Udawat ◽  
Avinash Mishra ◽  
Bhavanath Jha
2009 ◽  
Vol 75 (16) ◽  
pp. 5273-5283 ◽  
Author(s):  
Jérôme Gury ◽  
Hélène Seraut ◽  
Ngoc Phuong Tran ◽  
Lise Barthelmebs ◽  
Stéphanie Weidmann ◽  
...  

ABSTRACT The phenolic acid decarboxylase gene padA is involved in the phenolic acid stress response (PASR) in gram-positive bacteria. In Lactobacillus plantarum, the padR gene encodes the negative transcriptional regulator of padA and is cotranscribed with a downstream gene, usp1, which encodes a putative universal stress protein (USP), Usp1, of unknown function. The usp1 gene is overexpressed during the PASR. However, the role and the mechanism of action of the USPs are unknown in gram-positive bacteria. Therefore, to gain insights into the role of USPs in the PASR; (i) a usp1 deletion mutant was constructed; (ii) the two genes padR and usp1 were coexpressed with padA under its own promoter as a reporter gene in Escherichia coli; and (iii) molecular in vitro interactions between the PadR, Usp1, and the padA promoter were studied. Although the usp1 mutant strain retained phenolic acid-dependent PAD activity, it displayed a greater sensitivity to strong acidic conditions compared to that of the wild-type strain. PadR cannot be inactivated directly by phenolic acid in E. coli recombinant cultures but is inactivated by Usp1 when the two proteins are coexpressed in E. coli. The PadR inactivation observed in recombinant E. coli cells was supported by electrophoretic mobility shift assays. Although Usp1 seems not to be absolutely required for the PASR, its capacity to inactivate PadR indicates that it could serve as an important mediator in acid stress response mechanisms through its capacity to interact with transcriptional regulators.


Author(s):  
A Akram ◽  
K Arshad ◽  
MN Hafeez

Different types of abiotic stresses inhibit the normal growth of plants by changing their physical biochemical, morphological, and molecular traits. It links to the polygenic traits, which is controlled with the help of different genes, due to this polygenetic the manipulation of foreign genetic makeup is very difficult. Drought stress is the very major type of threat to reduce the yield of cash crops in Pakistan and as well as in all over the world. Gene manipulation is the solution to face this problem by producing genetically modified crop plants that have the ability to survive in drought conditions. Universal stress protein gene has been already identified in bacteria which showed its response under stressed conditions, by manipulation of universal stress protein gene. It was found from our study that the bacterial cells transformed with the USP2 gene isolated from cotton induced abiotic stress tolerance under heat, osmotic, and salt stress. It was suggested from our findings that the USP2 gene could be used to produce abiotic stress tolerance transgenic crop plants to enhance crop plant yield and quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Nadeem Hafeez ◽  
Mohsin Ahmad Khan ◽  
Bilal Sarwar ◽  
Sameera Hassan ◽  
Qurban Ali ◽  
...  

AbstractGossypium arboreum is considered a rich source of stress-responsive genes and the EST database revealed that most of its genes are uncharacterized. The full-length Gossypium universal stress protein-2 (GUSP-2) gene (510 bp) was cloned in E. coli and Gossypium hirsutum, characterized and point mutated at three positions, 352–354, Lysine to proline (M1-usp-2) & 214–216, aspartic acid to serine (M2-usp-2) & 145–147, Lysine to Threonine (M3-usp-2) to study its role in abiotic stress tolerance. It was found that heterologous expression of one mutant (M1-usp-2) provided enhanced tolerance against salt and osmotic stresses, recombinant cells have higher growth up to 10-5dilution in spot assay as compared to cells expressing W-usp-2 (wild type GUSP-2), M2-usp-2 and M3-usp-2 genes. M1-usp-2 gene transcript profiling exhibited significant expression (8.7 fold) in CIM-496-Gossypium hirsutum transgenic plants and enhance drought tolerance. However, little tolerance against heat and cold stresses in bacterial cells was observed. The results from our study concluded that the activity of GUSP-2 was enhanced in M1-usp-2 but wipe out in M2-usp-2 and M3-usp-2 response remained almost parallel to W-usp-2. Further, it was predicted through in silico analysis that M1-usp-2, W-usp-2 and M3-usp-2 may be directly involved in stress tolerance or function as a signaling molecule to activate the stress adaptive mechanism. However, further investigation will be required to ascertain its role in the adaptive mechanism of stress tolerance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jakob H. Viel ◽  
Amanda Y. van Tilburg ◽  
Oscar P. Kuipers

The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.


1994 ◽  
Vol 28 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Ryoichi Sato ◽  
Katsuyoshi Takeuchi ◽  
Katsutoshi Ogiwara ◽  
Masayosi Minami ◽  
Yasuko Kaji ◽  
...  

2013 ◽  
Vol 5 (3) ◽  
pp. 499-513
Author(s):  
M. Z. Alam ◽  
L. Ragionieri ◽  
M. A. S. Santos ◽  
A. Iqbal

Enzymes and other protein purification using recombinant DNA technology have become popular due to scarcity of natural protein. Saccharomyces cerevisiae is a demanding host, since it facilitates protein expression by its relative simplicity, safe organisms, inexpensive and has many properties of eukaryotic expression system. As an alternative host we express E. coli lacZ gene with GST tag in Saccharomyces cerevisiae and successfully purified from soluble extracts. The concentration of soluble GST-? galactosidase protein was approximately 0.57 mg/ml of elution buffer yielded from 50 ml yeast cell culture. The ?-galactosidase protein from insoluble extract was low due to the increasing solubility of GST tag. Keywords: ?-galactosidase; Heterologous expression; GST tag; Affinity chromatography. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v5i3.13820 J. Sci. Res. 5 (3), 499-513 (2013)  


Sign in / Sign up

Export Citation Format

Share Document