scholarly journals “Hot spots” of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil

Geoderma ◽  
2017 ◽  
Vol 305 ◽  
pp. 336-345 ◽  
Author(s):  
Nadine Loick ◽  
Elizabeth Dixon ◽  
Diego Abalos ◽  
Antonio Vallejo ◽  
Peter Matthews ◽  
...  
2001 ◽  
Vol 29 (6) ◽  
pp. 629-640 ◽  
Author(s):  
S. J. Ferguson

Many proteins with one or more haem groups bound per polypeptide chain are called cytochromes. They function in electron transfer reactions and some are involved directly in the catalysis of chemical reactions, most prominently the reduction of oxygen to water in the terminal step of cell respiration. When unmodified haem is present the cytochromes are referred to as b-type, but if the haem is covalently attached to thiol groups of a Cys-Xaa-Xaa-Cys-His motif then the cytochrome is a c-type. Neither the purpose of this post-translational modification, nor the mechanisms of the machineries that are necessary for formation of the thioether bonds between protein and haem, are fully understood. In bacteria the c-type cytochromes function in the periplasm where they are involved in a range of electron transport activities, including the reactions of denitrification, in which nitrate is reduced sequentially via nitrite, nitric oxide and nitrous oxide to nitrogen gas. Other types of cytochromes have haem molecules with modifications to their porphyrin ring. These include the a-, d-, d1- and o-types. Although Keilin first described the a-, b- and c- types of cytochrome more than 60 years ago, we still do not have clear explanations as to why one type of haem moiety does not suffice for the requirements of mitochondrial, thylakoid and bacterial electron transport.


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 731-738 ◽  
Author(s):  
Roland Harrison ◽  
Sharon Ellis ◽  
Roy Cross ◽  
James Harrison Hodgson

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2005 ◽  
Vol 33 (1) ◽  
pp. 141-144 ◽  
Author(s):  
E.J. Bedmar ◽  
E.F. Robles ◽  
M.J. Delgado

Denitrification is an alternative form of respiration in which bacteria sequentially reduce nitrate or nitrite to nitrogen gas by the intermediates nitric oxide and nitrous oxide when oxygen concentrations are limiting. In Bradyrhizobium japonicum, the N2-fixing microsymbiont of soya beans, denitrification depends on the napEDABC, nirK, norCBQD, and nosRZDFYLX gene clusters encoding nitrate-, nitrite-, nitric oxide- and nitrous oxide-reductase respectively. Mutational analysis of the B. japonicum nap genes has demonstrated that the periplasmic nitrate reductase is the only enzyme responsible for nitrate respiration in this bacterium. Regulatory studies using transcriptional lacZ fusions to the nirK, norCBQD and nosRZDFYLX promoter region indicated that microaerobic induction of these promoters is dependent on the fixLJ and fixK2 genes whose products form the FixLJ–FixK2 regulatory cascade. Besides FixK2, another protein, nitrite and nitric oxide respiratory regulator, has been shown to be required for N-oxide regulation of the B. japonicum nirK and norCBQD genes. Thus nitrite and nitric oxide respiratory regulator adds to the FixLJ–FixK2 cascade an additional control level which integrates the N-oxide signal that is critical for maximal induction of the B. japonicum denitrification genes. However, the identity of the signalling molecule and the sensing mechanism remains unknown.


2011 ◽  
Vol 343-344 ◽  
pp. 862-867
Author(s):  
Tao Li ◽  
G.J. Guo ◽  
M. Hu ◽  
M.J. Yao

The L-ascorbic acid can reduce the nitrite to nitric oxide, but the elevated nitrite-to-L-ascorbic acid ratio predisposes to the formation of potentially carcinogenic N-nitroso compound. We study the chemicals which nitrite reacted to L-ascorbic acid with an elevated L-ascorbic acid-to- nitrite ratio in the solution. The products, when the nitrite reacted with L-ascorbic in the solution, were nitric oxide (NO), dinitrogen monoxide (N2O) and nitrogen gas (N2). We give advice that it maybe useful to understand the products which nitrite reacts with L-ascorbic acid in the human beings and other organisms.


2001 ◽  
Vol 1 ◽  
pp. 312-319 ◽  
Author(s):  
Eric A. Davidson ◽  
Mercedes M.C. Bustamante ◽  
Alexandre de Siqueira Pinto

This paper reviews reports of nitrous oxide (N2O) and nitric oxide (NO) emissions from soils of the Amazon and Cerrado regions of Brazil. N2O is a stable greenhouse gas in the troposphere and participates in ozone-destroying reactions in the stratosphere, whereas NO participates in tropospheric photochemical reactions that produce ozone. Tropical forests and savannas are important sources of atmospheric N2O and NO, but rapid land use change could be affecting these soil emissions of N oxide gases. The five published estimates for annual emissions of N2O from soils of mature Amazonian forests are remarkably consistent, ranging from 1.4 to 2.4 kg N ha–1 year–1, with a mean of 2.0 kg N ha–1 year–1. Estimates of annual emissions of NO from Amazonian forests are also remarkably similar, ranging from 1.4 to 1.7 kg N ha–1 year–1, with a mean of 1.5 kg N ha–1 year–1. Although a doubling or tripling of N2O has been observed in some young (<2 years) cattle pastures relative to mature forests, most Amazonian pastures have lower emissions than the forests that they replace, indicating that forest-topasture conversion has, on balance, probably reduced regional emissions slightly (<10%). Secondary forests also have lower soil emissions than mature forests. The same patterns apply for NO emissions in Amazonia. At the only site in Cerrado where vegetation measurements have been made N2O emissions were below detection limits and NO emissions were modest (~0.4 kg N ha–1 year–1). Emissions of NO doubled after fire and increased by a factor of ten after wetting dry soil, but these pulses lasted only a few hours to days. As in Amazonian pastures, NO emissions appear to decline with pasture age. Detectable emissions of N2O have been measured in soybean and corn fields in the Cerrado region, but they are modest relative to fluxes measured in more humid tropical agricultural regions. No measurements of NO from agricultural soils in the Cerrado region have been made, but we speculate that they could be more important than N2O emissions in this relatively dry climate. While a consistent pattern is emerging from these studies in the Amazon region, far too few data exist for the Cerrado region to assess the impact of land use changes on N oxide emissions.


2020 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Nadia Elyassi ◽  
Ali Malekzadeh Shafaroudi ◽  
Pegah Nasiri ◽  
Mahmood Moosazadeh ◽  
Azam Nahvi

Context: Conflicting results have been reported in the literature concerning the relationship between salivary nitrous oxide concentration and dental caries in children. Metaanalysis studies aim to combine different studies and reduce the difference between the parameters by increasing the number of studies involved in the analysis process. Objectives: Accordingly, this meta-analysis study aimed at determining the relationship between salivary nitrous oxide concentration and dental caries in children. Methods: Databases were searched using the keywords “nitric oxide”, “salivary”, “Caries”, “DMFT Index”, “children”, “early childhood caries” and OR, AND and NOT operators. Quality assessment was then performed based on the Newcastle-Ottawa scale (NOS) checklist. The standardized mean difference (SMD) of DMFT, dmft, and salivary nitric oxide (NO) concentration was estimated. Results: Seven studies made a comparison between the mean salivary NO concentration in children with dental caries and that in the control group. In four studies, the mean salivary NO concentration in children with dental caries was lower, as compared to that in the control group. This difference was significant in all four studies. Also, the mean standardized difference of the salivary NO index was also estimated to be -0.11 (CI 95%: -1.77, 1.55). Conclusions: This meta-analysis study demonstrated that salivary NO concentration was not significantly related to dental caries. Moreover, since salivary NO concentration is affected by various factors, it is not sufficient to determine the likelihood of the incidence of caries.


Sign in / Sign up

Export Citation Format

Share Document