Structure and hydraulic properties in soils under long-term irrigation with treated wastewater

Geoderma ◽  
2019 ◽  
Vol 333 ◽  
pp. 90-98 ◽  
Author(s):  
Frederic Leuther ◽  
Steffen Schlüter ◽  
Rony Wallach ◽  
Hans-Jörg Vogel

Geoderma ◽  
2016 ◽  
Vol 264 ◽  
pp. 1-9 ◽  
Author(s):  
G. Bardhan ◽  
D. Russo ◽  
D. Goldstein ◽  
G.J. Levy


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1527
Author(s):  
Mahmoud S. Hashem ◽  
Xue-Bin Qi

As the most important resource for life, water has been a central issue on the international agenda for several decades. Yet, the world’s supply of clean freshwater is steadily decreasing due to extensive agricultural demand for irrigated lands. Therefore, water resources should be used with greater efficiency, and the use of non-traditional water resources, such as Treated Wastewater (TW), should be increased. Reusing TW could be an alternative option to increase water resources. Thus, many countries have decided to turn wastewater into an irrigation resource to help meet urban demand and address water shortages. However, because of the nature of that water, there are potential problems associated with its use in irrigation. Some of the major concerns are health hazards, salinity build-up, and toxicity hazards. The objectives of this comprehensive literature review are to illuminate the importance of using TW in irrigation as an alternative freshwater source and to assess the effects of its use on soil fertility and other soil properties, plants, and public health. The literature review reveals that TW reuse has become part of the extension program for boosting water resource utilization. However, the uncontrolled application of such waters has many unfavorable effects on both soils and plants, especially in the long-term. To reduce these unfavorable effects when using TW in irrigation, proper guidelines for wastewater reuse and management should be followed to limit negative effects significantly.



2021 ◽  
Vol 593 ◽  
pp. 125890
Author(s):  
Xiaoxian Zhang ◽  
Andrew L. Neal ◽  
John W. Crawford ◽  
Aurelie Bacq-Labreuil ◽  
Elsy Akkari ◽  
...  


2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.



2014 ◽  
Vol 38 (4) ◽  
pp. 1281-1292 ◽  
Author(s):  
Luis Alberto Lozano ◽  
Carlos Germán Soracco ◽  
Vicente S. Buda ◽  
Guillermo O. Sarli ◽  
Roberto Raúl Filgueira

The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.



2017 ◽  
Vol 10 ◽  
pp. 200-214 ◽  
Author(s):  
Ndiye M. Kebonye ◽  
Peter N. Eze ◽  
Felicia O. Akinyemi


2013 ◽  
Vol 1 (1) ◽  
pp. 29-43 ◽  
Author(s):  
P. J. Morris ◽  
A. J. Baird ◽  
L. R. Belyea

Abstract. The sloping flanks of peatlands are commonly patterned with non-random, contour-parallel stripes of distinct micro-habitats such as hummocks, lawns and hollows. Patterning seems to be governed by feedbacks among peatland hydrological processes, plant micro-succession, plant litter production and peat decomposition. An improved understanding of peatland patterning may provide important insights into broader aspects of the long-term development of peatlands and their likely response to future climate change. We recreated a cellular simulation model from the literature, as well as three subtle variants of the model, to explore the controls on peatland patterning. Our models each consist of three submodels, which simulate: peatland water tables in a gridded landscape, micro-habitat dynamics in response to water-table depths, and changes in peat hydraulic properties. We found that the strength and nature of simulated patterning was highly dependent on the degree to which water tables had reached a steady state in response to hydrological inputs. Contrary to previous studies, we found that under a true steady state the models predict largely unpatterned landscapes that cycle rapidly between contrasting dry and wet states, dominated by hummocks and hollows, respectively. Realistic patterning only developed when simulated water tables were still transient. Literal interpretation of the degree of hydrological transience required for patterning suggests that the model should be discarded; however, the transient water tables appear to have inadvertently replicated an ecological memory effect that may be important to peatland patterning. Recently buried peat layers may remain hydrologically active despite no longer reflecting current vegetation patterns, thereby highlighting the potential importance of three-dimensional structural complexity in peatlands to understanding the two-dimensional surface-patterning phenomenon. The models were highly sensitive to the assumed values of peat hydraulic properties, which we take to indicate that the models are missing an important negative feedback between peat decomposition and changes in peat hydraulic properties. Understanding peatland patterning likely requires the unification of cellular landscape models such as ours with cohort-based models of long-term peatland development.



2002 ◽  
Vol 42 (3) ◽  
pp. 273 ◽  
Author(s):  
M. G. Bethune ◽  
T. J. Batey

Irrigation-induced salinity is a serious problem facing irrigated areas in the Murray–Darling Basin of Australia. Groundwater pumping with farm re-use for irrigation is a key strategy for controlling salinity in these irrigation areas. However, the re-use of highly saline–sodic groundwater for irrigation leads to accumulation of sodium in the soil profile and can result in sodic soils. Leaching of saline–sodic soils by winter rainfall and low salinity irrigation waters are 2 management scenarios likely to exacerbate sodicity problems. Characteristic to sodic soils is poor soil structure and potentially reduced soil permeability. Two indicators of soil permeability are infiltration rate and hydraulic conductivity. A replicated plot experiment was conducted to examine the long-term impact of irrigation with saline–sodic water on soil permeability. High levels of soil sodicity (ESP up to 45%) resulted from 10 years of saline irrigation. Over this period, leaching by winter rainfall did not result in long-term impacts on soil hydraulic properties. Measured soil hydraulic properties increased linearly with the salinity of the applied irrigation water. Leaching by irrigating with low salinity water for 13 months decreased soil salinity and sodicity in the topsoil. The resulting reduction in steady-state infiltration indicates soil structural decline of the topsoil. This trial shows that groundwater re-use on pasture will result in high sodium levels in the soil. Sodicity-related soil structural problems are unlikely to develop where there is consistent groundwater irrigation of pasture. However, structural decline of these soils is likely following the cessation of groundwater re-use.



Soil Research ◽  
1992 ◽  
Vol 30 (3) ◽  
pp. 265 ◽  
Author(s):  
HP Cresswell ◽  
DE Smiles ◽  
J Williams

We review the influence of soil structural change on the fundamental soil hydraulic properties (unsaturated hydraulic conductivity and the soil moisture characteristic) and utilize deterministic modelling to assess subsequent effects on the soil water balance. Soil structure is reflected in the 0 to -100 kPa matric potential section of the soil moisture characteristic with marked changes often occurring in light to medium textured soils' (sands, sandy-loam, loams and clay-loams). The effect of long-term tillage on soil structure may decrease hydraulic conductivity within this matric potential range. The 'SWIM' (Soil Water Infiltration and Movement) simulation model was used to illustrate the effects of long-term conventional tillage and direct drilling systems on the water balance. The effects of plough pans, surface crusts and decreasing surface detention were also investigated. Significant structural deterioration, as evidenced by substantially reduced hydraulic conductivity, is necessary before significant runoff is generated in the low intensity rainfall regime of the Southern Tablelands (6 min rainfall intensity <45 mm h-1). A 10 mm thick plough pan (at a depth of 100 mm) in the A-horizon of a long-term conventionally tilled soil required a saturated hydraulic conductivity (K,) of less than 2.5 mm h-1 before runoff exceeded 10% of incident rainfall in this rainfall regime. Similarly, a crust K, of less than 2.5 mm h-1 was necessary before runoff exceeded 10% of incident rainfall (provided that surface detention was 2 or more). As the crust K, approached the rainfall rate, small decreases in Ks resulted in large increases in runoff. An increase in surface detention of 1 to 3 mm resulted in a large reduction in runoff where crust K, was less than 2-5 mm h-1. Deterministic simulation models incorporating well established physical laws are effective tools in the study of soil structural effects on the field water regime. Their application, however, is constrained by insufficient knowledge of the fundamental hydraulic properties of Australian soils and how they are changing in response to our land management.



Sign in / Sign up

Export Citation Format

Share Document