Modeling shallow landslides and river bed variation associated with extreme rainfall-runoff events in a granitoid mountainous forested catchment in Japan

Geomorphology ◽  
2011 ◽  
Vol 125 (2) ◽  
pp. 282-292 ◽  
Author(s):  
Goro Mouri ◽  
Michiharu Shiiba ◽  
Tomoharu Hori ◽  
Taikan Oki
Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 299 ◽  
Author(s):  
R. J. Loch

This research was carried out to quantify the role of vegetative cover in reducing runoff and erosion from rehabilitated mined land. Duplicate plots 1.5 m wide and 12 m long were prepared on a rehabilitated area of the Meandu Mine, Tarong, with vegetative cover of 0, 23%, 37%, 47%, and 100%. The area had a uniform 15% slope, and there were no rill or gully lines present. Simulated rain equivalent to a 1 : 100 year storm was applied to the plots, and runoff and erosion were measured. Infiltration totals and rates increased strongly with increasing vegetative cover. There was visibly greater infiltration under vegetation. Erosion from the simulated storm was greatly reduced by vegetative cover, declining from 30–35 t/ha at 0% vegetative cover to 0.5 t/ha at 47% cover. Reductions in erosion at lower levels of vegetative cover were greater than predicted by the cover/erosion relationship used in the USLE. The dominantly stoloniferous growth habit of the grass at this site may have increased the effectiveness of vegetative cover in this study. To allow the data to be extrapolated to slopes longer than 12 m, a series of overland flows were applied to the upslope boundaries of the plots, simulating flows on slopes up to 70 m long. Detachment and transport of sediment by applied overland flow was similarly reduced by vegetative cover, and results from the overland flow study also indicate that for slopes up to 70 m long with grass cover of 47% or greater, erosion rates will be minimal, even under extreme rainfall/runoff events.


2013 ◽  
Vol 10 (10) ◽  
pp. 12105-12151 ◽  
Author(s):  
J. Moravcová ◽  
T. Pavlíček ◽  
P. Ondr ◽  
M. Koupilová ◽  
T. Kvítek

Abstract. The behavior of solute concentrations during storm events is completely different from their behaviour under normal conditions, and very often results in hysteresis. This study aim is to explore the relationship between the biogeochemical and hydrological parameters describing natural conditions and the reciprocal interactions between changes in concentration of selected indicators of water quality in water and the discharge dynamics during different types of extreme rainfall-runoff events in the Jenínský stream and the Kopaninský stream catchment (Czech Republic). The relationship between concentrations and runoffs is explained by concentration-discharge hysteretic loops. As the statistical method used for cross analyzing the impact of the parameters there was chosen the RDA analysis. The relationships between the particular parameters were examined separately by conditions of spring snow melt and summer storm events. The results than confirmed the very strong relationship between parameters describing water quality and percentage of stable parts of the catchment and also of infiltration vulnerable sites.


RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Luiz Claudio Galvão do Valle Junior ◽  
Dulce Buchala Bicca Rodrigues ◽  
Paulo Tarso Sanches de Oliveira

ABSTRACT The Curve Number (CN) method is extensively used for predict surface runoff from storm events. However, remain some uncertainties in the method, such as in the use of an initial abstraction (λ) standard value of 0.2 and on the choice of the most suitable CN values. Here, we compute λ and CN values using rainfall and runoff data to a rural basin located in Midwestern Brazil. We used 30 observed rainfall-runoff events with rainfall depth greater than 25 mm to derive associated CN values using five statistical methods. We noted λ values ranging from 0.005 to 0.455, with a median of 0.045, suggesting the use of λ = 0.05 instead of 0.2. We found a S0.2 to S0.05 conversion factor of 2.865. We also found negative values of Nash-Sutcliffe Efficiency (to the estimated and observed runoff). Therefore, our findings indicated that the CN method was not suitable to estimate runoff in the studied basin. This poor performance suggests that the runoff mechanisms in the studied area are dominated by subsurface stormflow.


2016 ◽  
Vol 14 (3) ◽  
pp. 443-459 ◽  
Author(s):  
Keewook Kim ◽  
Gene Whelan ◽  
Marirosa Molina ◽  
S. Thomas Purucker ◽  
Yakov Pachepsky ◽  
...  

A series of simulated rainfall-runoff experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall-runoff events. Simulating time-varying release of Escherichia coli, enterococci, and fecal coliforms from manures applied at typical agronomic rates evaluated the efficacy of the Bradford–Schijven model modified by adding terms for release efficiency and transportation loss. Two complementary, parallel approaches were used to calibrate the model and estimate microbial release parameters. The first was a four-step sequential procedure using the inverse model PEST, which provides appropriate initial parameter values. The second utilized a PEST/bootstrap procedure to estimate average parameters across plots, manure age, and microbe, and to provide parameter distributions. The experiment determined that manure age, microbe, and season had no clear relationship to the release curve. Cattle solid pats released microbes at a different, slower rate than did poultry dry litter or swine slurry, which had very similar release patterns. These findings were consistent with other published results for both bench- and field-scale, suggesting the modified Bradford–Schijven model can be applied to microbial release from manure.


2015 ◽  
Vol 63 (3) ◽  
pp. 235-245 ◽  
Author(s):  
Laurent Pfister ◽  
Carlos E. Wetzel ◽  
Núria Martínez-Carreras ◽  
Jean François Iffly ◽  
Julian Klaus ◽  
...  

Abstract Hydrological processes research remains a field that is severely measurement limited. While conventional tracers (geochemicals, isotopes) have brought extremely valuable insights into water source and flowpaths, they nonetheless have limitations that clearly constrain their range of application. Integrating hydrology and ecology in catchment science has been repeatedly advocated as offering potential for interdisciplinary studies that are eventually to provide a holistic view of catchment functioning. In this context, aerial diatoms have been shown to have the potential for detecting of the onset/cessation of rapid water flowpaths within the hillslope-riparian zone-stream continuum. However, many open questions prevail as to aerial diatom reservoir size, depletion and recovery, as well as to their mobilisation and transport processes. Moreover, aerial diatoms remain poorly known compared to freshwater species and new species are still being discovered. Here, we ask whether aerial diatom flushing can be observed in three catchments with contrasting physiographic characteristics in Luxembourg, Oregon (USA) and Slovakia. This is a prerequisite for qualifying aerial diatoms as a robust indicator of the onset/cessation of rapid water flowpaths across a wider range of physiographical contexts. One species in particular, (Hantzschia amphioxys (Ehr.) Grunow), was found to be common to the three investigated catchments. Aerial diatom species were flushed, in different relative proportions, to the river network during rainfall-runoff events in all three catchments. Our take-away message from this preliminary examination is that aerial diatoms appear to have a potential for tracing episodic hydrological connectivity through a wider range of physiographic contexts and therefore serve as a complementary tool to conventional hydrological tracers.


2009 ◽  
Vol 13a (1) ◽  
pp. 19-40 ◽  
Author(s):  
Bolesław Osuch ◽  
Wiesław Gądek ◽  
Anna Homa ◽  
Marta Cebulska ◽  
Robert Szczepanek ◽  
...  

Methods of estimating the elements of water balance in a forested catchment basin The paper presents basic hydrological processes of rainfall-runoff transformation in experimental watershed of the Trzebuńka stream. Several field experiments were made to determine basic hydrological parameters, The influence of atmospheric circulation on spatial distribution of precipitation was investigated. Attempt was made to determine the influence of forest vegetation, undergrowth, forest litter retention and surface retention on water loss in the catchment. Water retention capacity of soil was also estimated. Developed mathematical model of rainfall-runoff transformation was used in several simulations. This allowed evaluating the effect of atmospheric circulation and spatial rainfall distribution on water balance, the influence of vegetation cover with forest litter on water runoff and the effect of forest litter alone in a hypothetical scenario of forest cutting.


2021 ◽  
Author(s):  
Andrea Abbate ◽  
Laura Longoni ◽  
Monica Papini

<p>In the field of hydrogeological risk, rainfalls represent the most important triggering factor for superficial terrain failures such as shallow landslides, soil slips and debris flow. The availability of local rain gauges measurements is fundamental for defining the cause-effect relationship for predicting failure scenarios. Unfortunately, these hydrogeological phenomena are typical triggered over mountains regions where the density of the ground-based meteorological network is poor, and the local effects caused by mountains topography can change dramatically the spatial and temporal distribution of rainfall. Therefore, trying to reconstruct a representative rainfall field across mountain areas is a challenge but is a mandatory task for the interpretation of triggering causes. We present a reanalysis of an ensemble of extreme rainfall events happened across central Alps and Pre-Alps, in the northern part of Lombardy Region, Italy. We have investigated around some critical aspects such as their intensity and persistency also proposing a modelling of their meteorological evolution, using the Linear Upslope-Rainfall Model (LUM). We have considered this model because it is designed for describing the mechanism of orographic precipitation intensification that was identified as the main cause of that extreme events. To test and calibrate the LUM model we have considered local rain gauges data because they represent the effective rainfall poured on the ground. These punctual data are generally considered for landslide assessment, in particular for rainfall induced phenomena such as shallow landslides and debris flows. Considering our test cases, the results obtained have shown that the LUM has been able to reproduce accurately the rainfall field. In this regard, LUM model can help to address further information around those ungauged area where rainfall estimation could be critical for evaluating the hazard. We are conscious that our and other studies around this topic would be propaedeutic in the next future for the adoption of an integrated framework among the real-time meteorological modelling and the hydrogeological induced risk assessment and prevision.</p>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2324
Author(s):  
Peng Lin ◽  
Pengfei Shi ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Zhenya Li ◽  
...  

Hydrological models for regions characterized by complex runoff generation process been suffer from a great weakness. A delicate hydrological balance triggered by prolonged wet or dry underlying condition and variable extreme rainfall makes the rainfall-runoff process difficult to simulate with traditional models. To this end, this study develops a novel vertically mixed model for complex runoff estimation that considers both the runoff generation in excess of infiltration at soil surface and that on excess of storage capacity at subsurface. Different from traditional models, the model is first coupled through a statistical approach proposed in this study, which considers the spatial heterogeneity of water transport and runoff generation. The model has the advantage of distributed model to describe spatial heterogeneity and the merits of lumped conceptual model to conveniently and accurately forecast flood. The model is tested through comparison with other four models in three catchments in China. The Nash–Sutcliffe efficiency coefficient and the ratio of qualified results increase obviously. Results show that the model performs well in simulating various floods, providing a beneficial means to simulate floods in regions with complex runoff generation process.


Sign in / Sign up

Export Citation Format

Share Document