ID: 3523011 REAL TIME DETECTING SYSTEM FOR SUPERFICIAL LARYNGO-PHARYNGEAL CANCER ON ENDOSCOPIC VIDEO IMAGES USING ARTIFICIAL INTELLIGENCE

2021 ◽  
Vol 93 (6) ◽  
pp. AB202-AB203
Author(s):  
Atsushi Inaba ◽  
Keiichiro Nakajo ◽  
Takashi Watanabe ◽  
Naoki Aoyama ◽  
Kenji Takashima ◽  
...  
Gut ◽  
2017 ◽  
Vol 68 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Michael F Byrne ◽  
Nicolas Chapados ◽  
Florian Soudan ◽  
Clemens Oertel ◽  
Milagros Linares Pérez ◽  
...  

BackgroundIn general, academic but not community endoscopists have demonstrated adequate endoscopic differentiation accuracy to make the ‘resect and discard’ paradigm for diminutive colorectal polyps workable. Computer analysis of video could potentially eliminate the obstacle of interobserver variability in endoscopic polyp interpretation and enable widespread acceptance of ‘resect and discard’.Study design and methodsWe developed an artificial intelligence (AI) model for real-time assessment of endoscopic video images of colorectal polyps. A deep convolutional neural network model was used. Only narrow band imaging video frames were used, split equally between relevant multiclasses. Unaltered videos from routine exams not specifically designed or adapted for AI classification were used to train and validate the model. The model was tested on a separate series of 125 videos of consecutively encountered diminutive polyps that were proven to be adenomas or hyperplastic polyps.ResultsThe AI model works with a confidence mechanism and did not generate sufficient confidence to predict the histology of 19 polyps in the test set, representing 15% of the polyps. For the remaining 106 diminutive polyps, the accuracy of the model was 94% (95% CI 86% to 97%), the sensitivity for identification of adenomas was 98% (95% CI 92% to 100%), specificity was 83% (95% CI 67% to 93%), negative predictive value 97% and positive predictive value 90%.ConclusionsAn AI model trained on endoscopic video can differentiate diminutive adenomas from hyperplastic polyps with high accuracy. Additional study of this programme in a live patient clinical trial setting to address resect and discard is planned.


Author(s):  
Mitsuhiro Kono ◽  
Ryu Ishihara ◽  
Yusuke Kato ◽  
Muneaki Miyake ◽  
Ayaka Shoji ◽  
...  

2020 ◽  
Vol 34 (10) ◽  
pp. 13849-13850
Author(s):  
Donghyeon Lee ◽  
Man-Je Kim ◽  
Chang Wook Ahn

In a real-time strategy (RTS) game, StarCraft II, players need to know the consequences before making a decision in combat. We propose a combat outcome predictor which utilizes terrain information as well as squad information. For training the model, we generated a StarCraft II combat dataset by simulating diverse and large-scale combat situations. The overall accuracy of our model was 89.7%. Our predictor can be integrated into the artificial intelligence agent for RTS games as a short-term decision-making module.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 20
Author(s):  
Reynaldo Villarreal-González ◽  
Antonio J. Acosta-Hoyos ◽  
Jaime A. Garzon-Ochoa ◽  
Nataly J. Galán-Freyle ◽  
Paola Amar-Sepúlveda ◽  
...  

Real-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ania Syrowatka ◽  
Masha Kuznetsova ◽  
Ava Alsubai ◽  
Adam L. Beckman ◽  
Paul A. Bain ◽  
...  

AbstractArtificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.


Sign in / Sign up

Export Citation Format

Share Document