scholarly journals Hydroxypropylmethyl cellulose (HPMC) crosslinked keratin/hydroxyapatite (HA) scaffold fabrication, characterization and in vitro biocompatibility assessment as a bone graft for alveolar bone regeneration

Heliyon ◽  
2021 ◽  
pp. e08294
Author(s):  
Sandleen Feroz ◽  
George Dias
2020 ◽  
Vol 22 ◽  
pp. 100732 ◽  
Author(s):  
Jithendra T. Ratnayake ◽  
Eden D. Ross ◽  
George J. Dias ◽  
Kyle M. Shanafelt ◽  
Shay S. Taylor ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 497 ◽  
Author(s):  
Moumita Ghosh ◽  
Michal Halperin-Sternfeld ◽  
Itzhak Grinberg ◽  
Lihi Adler-Abramovich

The high demand for tissue engineering scaffolds capable of inducing bone regeneration using minimally invasive techniques prompts the need for the development of new biomaterials. Herein, we investigate the ability of Alginate incorporated with the fluorenylmethoxycarbonyl-diphenylalanine (FmocFF) peptide composite hydrogel to serve as a potential biomaterial for bone regeneration. We demonstrate that the incorporation of the self-assembling peptide, FmocFF, in sodium alginate leads to the production of a rigid, yet injectable, hydrogel without the addition of cross-linking agents. Scanning electron microscopy reveals a nanofibrous structure which mimics the natural bone extracellular matrix. The formed composite hydrogel exhibits thixotropic behavior and a high storage modulus of approximately 10 kPA, as observed in rheological measurements. The in vitro biocompatibility tests carried out with MC3T3-E1 preosteoblast cells demonstrate good cell viability and adhesion to the hydrogel fibers. This composite scaffold can induce osteogenic differentiation and facilitate calcium mineralization, as shown by Alizarin red staining, alkaline phosphatase activity and RT-PCR analysis. The high biocompatibility, excellent mechanical properties and similarity to the native extracellular matrix suggest the utilization of this hydrogel as a temporary three-dimensional cellular microenvironment promoting bone regeneration.


Author(s):  
Pawan Kumar ◽  
Meenu Saini ◽  
Brijnandan S. Dehiya ◽  
Ahmad Umar ◽  
Anil Sindhu ◽  
...  

Author(s):  
Wanghan Xu ◽  
Wei Tan ◽  
Chan Li ◽  
Keke Wu ◽  
Xinyi Zeng ◽  
...  

AbstractPeriodontitis is a progressive infectious inflammatory disease, which leads to alveolar bone resorption and loss of periodontal attachment. It is imperative for us to develop a therapeutic scaffold to repair the alveolar bone defect of periodontitis. In this study, we designed a new composite scaffold loading metformin (MET) by using the freeze-drying method, which was composed of β-tricalcium phosphate (β-TCP), chitosan (CTS) and the mesoporous silica (SBA-15). The scaffolds were expected to combine the excellent biocompatibility of CTS, the good bioactivity of β-TCP, and the anti-inflammatory properties of MET. The MET-loaded β-TCP/CTS/SBA-15 scaffolds showed improved cell adhesion, appropriate porosity and good biocompatibility in vitro. This MET composite scaffold was implanted in the alveolar bone defects area of rats with periodontitis. After 12 weeks, Micro-CT and histological analysis were performed to evaluate different degrees of healing and mineralization. Results showed that the MET-loaded β-TCP/CTS/SBA-15 scaffolds promoted alveolar bone regeneration in a rat model of periodontitis. To our knowledge, this is the first report that MET-loaded β-TCP/CTS/SBA-15 scaffolds have a positive effect on alveolar bone regeneration in periodontitis. Our findings might provide a new and promising strategy for repairing alveolar bone defects under the condition of periodontitis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pierre Tournier ◽  
Jérôme Guicheux ◽  
Arnaud Paré ◽  
Aymeric Maltezeanu ◽  
Thibaut Blondy ◽  
...  

AbstractIn skeletal surgical procedures, bone regeneration in irregular and hard-to-reach areas may present clinical challenges. In order to overcome the limitations of traditional autologous bone grafts and bone substitutes, an extrudable and easy-to-handle innovative partially demineralized allogenic bone graft in the form of a paste has been developed. In this study, the regenerative potential of this paste was assessed and compared to its clinically used precursor form allogenic bone particles. Compared to the particular bone graft, the bone paste allowed better attachment of human mesenchymal stromal cells and their commitment towards the osteoblastic lineage, and it induced a pro-regenerative phenotype of human monocytes/macrophages. The bone paste also supported bone healing in vivo in a guide bone regeneration model and, more interestingly, exhibited a substantial bone-forming ability when implanted in a critical-size defect model in rat calvaria. Thus, these findings indicate that this novel partially demineralized allogeneic bone paste that combines substantial bone healing properties and rapid and ease-of-use may be a promising alternative to allogeneic bone grafts for bone regeneration in several clinical contexts of oral and maxillofacial bone grafting.


2021 ◽  
Vol 11 (17) ◽  
pp. 7921
Author(s):  
Joo-Seong Kim ◽  
Tae-Sik Jang ◽  
Suk-Young Kim ◽  
Won-Pyo Lee

Bone grafts used in alveolar bone regeneration can be categorized into autografts, allografts, xenografts, and synthetic bones, depending on their origin. The purpose of this study was to evaluate the effect of a commercialized octacalcium phosphate (OCP)-based synthetic bone substitute material (Bontree®) in vitro, in vivo, and in clinical cases. Material characterization of Bontree® granules (0.5 mm and 1.0 mm) using scanning electron microscopy and X-ray diffraction showed that both 0.5 mm and 1.0 mm Bontree® granules were uniformly composed mainly of OCP. The receptor activator of NF-κB ligand (RANKL) and alkaline phosphatase (ALP) activities of MG63 cells were assessed and used to compare Bontree® with a commercial biphasic calcium phosphate ceramic (MBCP+TM). Compared with MBCP+TM, Bontree® suppressed RANKL and increased ALP activity. A rabbit tibia model used to examine the effects of granule size of Bontree® grafts showed that 1.0 mm Bontree® granules had a higher new bone formation ability than 0.5 mm Bontree® granules. Three clinical cases using Bontree® for ridge or sinus augmentation are described. All eight implants in the three patients showed a 100% success rate after 1 year of functional loading. This basic research and clinical application demonstrated the safety and efficacy of Bontree® for bone regeneration.


2021 ◽  
Vol 19 ◽  
pp. 228080002110232
Author(s):  
Tao Wu ◽  
Zhanpeng Li ◽  
Yadong Chen ◽  
Qiang Liu ◽  
Jingshu Zhang ◽  
...  

A slowly degradable bone scaffold can well maintain the balance between new bone regeneration and scaffold resorption, esp. for seniors or patients suffering from pathological diseases, because too fast degradation can lead to the loss of long-term biological stability and result in scaffold failure. In this present study, calcium phosphate silicate (CPS) and polydimethylsiloxane (PDMS) were blended in different ratios to formulate slurries for scaffold fabrication. The effects of crosslinked PDMS on the CPS material properties were first characterized and the most viable formulation of CPS-PDMS slurry was determined based on the aforementioned results to 3D fabricate scaffolds. The biocompatibility of CPS-PDMS was further evaluated based on the scaffold extract’s cytotoxicity to osteoblast cells. Furthermore, real-time PCR was used to investigate the effects of scaffold extract to increase osteoblast proliferation. It is showed that the crosslinked PDMS interfered with CPS hydration and reduced both setting rate and compressive strength of CPS. In addition, CPS porosity was also found to increase with PDMS due to uneven water distribution as a result of increased hydrophobicity. Degradation and mineralization studies show that CPS-PDMS scaffold was slowly degradable and induced apatite formation. In addition, the in vitro analyses show that the CPS-PDMS scaffold did not exert any cytotoxic effect on osteoblast cells but could improve the cell proliferation via the TGFβ/BMP signaling pathway. In conclusion, CPS-PDMS scaffold is proved to be slowly degradable and biocompatible. Further analyses are therefore needed to demonstrate CPS-PDMS scaffold applications in bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document