scholarly journals Immune gene network of neurological diseases: Multiple Sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD)

Heliyon ◽  
2021 ◽  
pp. e08518
Author(s):  
Shradha Mukherjee
Author(s):  
Rahul ◽  
Yasir Hasan Siddique

: Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington’s disease, Multiple Sclerosis and Ischemic stroke have become a major health problem worldwide. Pre-clinical studies have demonstrated the beneficial effects of flavonoids on neurodegenerative diseases and suggesting them to be used as therapeutic agents. Kaempferol is found in many plants such as tea, beans, broccoli,strawberriesand has neuroprotective effects against the development of many neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and Huntington's disease. The present study summarizesthe neuroprotective effects of kaempferol in various models of neurodegenerative diseases. Kaempferol delays the initiation as well as the progression of neurodegenerative disorders by acting as a scavenger of free radicals and preserving the activity of various antioxidant enzymes. Kaempferolcan crossthe blood-brain barrier (BBB), and therefore results inan enhanced protective effect. The multi-target property of kaempferol makes it a potential dietary supplement in preventing and treating neurodegenerative diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Shanmugam Manoharan ◽  
Gilles J. Guillemin ◽  
Rajagopal Selladurai Abiramasundari ◽  
Musthafa Mohamed Essa ◽  
Mohammed Akbar ◽  
...  

Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimer’s disease (AD), impairments in the movement, Parkinson’s disease (PD), and the inability to walk, talk, and think, Huntington’s disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.


Author(s):  
Zeyu Song ◽  
Ying Zhou ◽  
Xiao Han ◽  
Jieling Qin ◽  
Xiaoying Tang

The use of sensitive electrochemical sensors to detect biomarkers is an effective method for the early diagnosis of several neurodegenerative diseases (NDs), such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,...


Author(s):  
Mohammad Zamanian ◽  
Małgorzata Kujawska ◽  
Marjan Nikbakht Zadeh ◽  
Amin Hassanshahi ◽  
Soudeh Ramezanpour ◽  
...  

Background & objective: Neurological diseases are becoming a significant problem worldwide, with the elderly at a higher risk of being affected. Several researchers have investigated the neuroprotective effects of Carvacrol (CAR) (5-isopropyl-2-methyl phenol). This review systematically surveys the existing literature on the impact of CAR when used as a neuroprotective agent in neurological diseases. Methods: The systematic review involved English articles published in the last ten years obtained from PubMed, Google Scholar, and Scopus databases. The following descriptors were used to search the literature: “Carvacrol” [Title] AND “neuroprotective (neuroprotection)” [Title] OR “stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, seizure, epilepsy [Title]. Results: : A total of 208 articles were retrieved during the search process, but only 20 studies met the eligibility criteria and were included for review. A total of 20 articles were identified, in which the efficacy of CAR was described in experimental models of stroke, traumatic brain injury, Parkinson’s disease, Alzheimer’s disease, , epilepsy, and seizure, through motor deficits improvements in neurochemical activity, especially antioxidant systems, reducing inflammation, oxidative stress and apoptosis as well as inhibition of TRPC1 and TRPM7. Conclusion : The data presented in this study support the beneficial impact of CAR on behavioural and neurochemical deficits. CAR benefits accrue because of its anti-apoptotic, antioxidant, and anti-inflammatory properties. Therefore, CAR has emerged as an alternative treatment for neurological disorders based on its properties.


Sign in / Sign up

Export Citation Format

Share Document