Chronic Single Nephrectomy Prolongs Action Potential Duration by Inhibiting Transient Outward Currents in Left Ventricular Myocytes

Heart Rhythm ◽  
2009 ◽  
Vol 6 (11) ◽  
pp. 1690
Author(s):  
Kuan-Cheng Chang ◽  
Shih-Sheng Chang ◽  
Hsin-Yueh Liang ◽  
An-Sheng Lee ◽  
Ming-Jai Su
1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


2005 ◽  
Vol 102 (6) ◽  
pp. 1165-1173 ◽  
Author(s):  
Toshiya Shiga ◽  
Sandro Yong ◽  
Joseph Carino ◽  
Paul A. Murray ◽  
Derek S. Damron

Background Droperidol has recently been associated with cardiac arrhythmias and sudden cardiac death. Changes in action potential duration seem to be the cause of the arrhythmic behavior, which can lead to alterations in intracellular free Ca concentration ([Ca]i). Because [Ca]i and myofilament Ca sensitivity are key regulators of myocardial contractility, the authors' objective was to identify whether droperidol alters [Ca]i or myofilament Ca sensitivity in rat ventricular myocytes and to identify the cellular mechanisms responsible for these effects. Methods Freshly isolated rat ventricular myocytes were obtained from adult rat hearts. Myocyte shortening, [Ca]i, nitric oxide production, intracellular pH, and action potentials were monitored in cardiomyocytes exposed to droperidol. Langendorff perfused hearts were used to assess overall cardiac function. Results Droperidol (0.03-1 mum) caused concentration-dependent decreases in peak [Ca]i and shortening. Droperidol inhibited 35 mm KCl-induced increase in [Ca]i, with little direct effect on sarcoplasmic reticulum Ca stores. Droperidol had no effect on action potential duration but caused a rightward shift in the concentration-response curve to extracellular Ca for shortening, with no concomitant effect on peak [Ca]i. Droperidol decreased pHi and increased nitric oxide production. Droperidol exerted a negative inotropic effect in Langendorff perfused hearts. Conclusion These data demonstrate that droperidol decreases cardiomyocyte function, which is mediated by a decrease in [Ca]i and a decrease in myofilament Ca sensitivity. The decrease in [Ca]i is mediated by decreased sarcolemmal Ca influx. The decrease in myofilament Ca sensitivity is likely mediated by a decrease in pHi and an increase in nitric oxide production.


1995 ◽  
Vol 73 (11) ◽  
pp. 1651-1660 ◽  
Author(s):  
Gwo-Jyh Chang ◽  
Ming-Jai Su ◽  
Pei-Hong Lee ◽  
Shoei-Sheng Lee ◽  
Karin Chiung-Sheue Liu

The mechanisms of the positive inotropic action of a new synthetic tetrahydroisoquinoline compound, SL-1, were investigated in isolated rat cardiac tissues and ventricular myocytes. SL-1 produced a rapidly developing, concentration-dependent positive inotropic response in both atrial and ventricular muscles and a negative chronotropic effect in spontaneously beating right atria. The positive inotropic effect was not prevented by pretreatment with reserpine (3 mg/kg) or the α-adrenoceptor antagonist prazosin (1 μM), but was suppressed by either the β-adrenoceptor antagonist atenolol (3 μM) or the K+ channel blocker 4-aminopyridine (4AP, 1 mM). In the whole-cell recording study, SL-1 increased the plateau level and prolonged the action potential duration in a concentration-dependent manner and decreased the maximum upstroke velocity [Formula: see text] and amplitude of the action potential in isolated rat ventricular myocytes stimulated at 1.0 Hz. On the other hand, SL-1 had little effect on the resting membrane potential, although it caused a slight decrease at higher concentrations. Voltage clamp experiments revealed that the increase of action potential plateau and prolongation of action potential duration were associated with an increase of Ca2+ inward current (ICa) via the activation of β-adrenoceptors and a prominent inhibition of 4AP-sensitive transient outward K+ current (Ito) with an IC50 of 3.9 μM. Currents through the inward rectifier K+ channel (IKl) were also reduced. The inhibition of Ito is characterized by a reduction in peak amplitude and a marked acceleration of current decay but without changes on the voltage dependence of steady-state inactivation. In addition to the inhibition of K+ currents, SL-1 also inhibited the Na+ inward current (INa) with an IC50 of 5.4 μM, which was correlated with the decrease of [Formula: see text]. We conclude that the positive inotropic effect of SL-1 may be due to an increase in Ca2+ current mediated via partial activation of β-adrenoceptors and an inhibition of K+ outward currents and the subsequent prolongation of action potentials.Key words: SL-1, tetrahydroisoquinoline, inotropic and chronotropic action, action potential, Na+, Ca2+, and K+ currents.


1990 ◽  
Vol 258 (3) ◽  
pp. H793-H805 ◽  
Author(s):  
F. S. Fein ◽  
B. E. Zola ◽  
A. Malhotra ◽  
S. Cho ◽  
S. M. Factor ◽  
...  

Left ventricular papillary muscle function, transmembrane action potentials, myosin adenosinetriphosphatase (ATPase) and isoenzyme distribution, and myocardial pathology were studied in hypertensive (H), diabetic (D), hypertensive-diabetic (HD), and control (C) rats. There was approximately 50% relative left ventricular hypertrophy in H and HD rats. Relative lung and liver weights were greater in HD rats. Peak velocity of shortening tended to decrease progressively in H, D, and HD rats. The duration of contraction and relaxation was markedly prolonged in Ds and HDs. The length-developed tension relation was blunted in HDs. The negative inotropic effect of verapamil was similar in all groups. Resting membrane potential and amplitude were decreased in D and HD rats. Action potential duration was increased in H, D, and especially HD rats. The shortening of action potential duration with increased stimulus frequency was greater in H, D, and especially HD rats than in Cs. Left ventricular myosin ATPase and V1 isoenzyme content decreased progressively in H, D, and HD rats. Right ventricular V1 isoenzyme content was not affected in H rats but was markedly decreased in D and HD rats. Left (and right) ventricular pathology was unchanged in rats with diabetes but was increased in rats with hypertension. These data suggest that the combination of myocardial pathology (due to hypertension) and cellular dysfunction (caused mainly by diabetes) may result in cardiomyopathy and congestive heart failure in the HD rat.


1994 ◽  
Vol 266 (3) ◽  
pp. H1184-H1194 ◽  
Author(s):  
J. Sanchez-Chapula ◽  
A. Elizalde ◽  
R. Navarro-Polanco ◽  
H. Barajas

In adult rabbit ventricular preparations, action potential duration is significantly increased when stimulation frequency is increased from 0.1 to 1.0 Hz. In neonatal preparations, a similar change in stimulation frequency produced no significant increase in action potential duration. To identify the ionic basis for this difference, we studied different outward currents in single myocytes from papillary muscle and from epicardial tissue of adult and neonatal rabbits. The densities of the outward currents in neonatal cells were about one-half of the current density in adult cells. The density of the voltage-activated transient outward current (I(to1)) was smaller in cells from papillary muscle than in cells from epicardium in adult and newborn rabbits. We found major differences in the kinetic behavior of I(to1) between adult and neonatal cells: 1) the rate of apparent inactivation was faster in neonatal cells, and 2) the recovery from inactivation was significantly faster in neonatal cells, with a time constant of 113 vs. 1,356 ms. We propose that this marked difference in the recovery from inactivation of I(to1) is the basis for the difference in frequency dependence of action potential duration.


2007 ◽  
Vol 292 (1) ◽  
pp. H549-H559 ◽  
Author(s):  
Gunnar Seemann ◽  
Frank B. Sachse ◽  
Daniel L. Weiss ◽  
Louis J. Ptáček ◽  
Martin Tristani-Firouzi

Elucidation of the cellular basis of arrhythmias in ion channelopathy disorders is complicated by the inherent difficulties in studying human cardiac tissue. Thus we used a computer modeling approach to study the mechanisms of cellular dysfunction induced by mutations in inward rectifier potassium channel (Kir)2.1 that cause Andersen-Tawil syndrome (ATS). ATS is an autosomal dominant disorder associated with ventricular arrhythmias that uncommonly degenerate into the lethal arrhythmia torsade de pointes. We simulated the cellular and tissue effects of a potent disease-causing mutation D71V Kir2.1 with mathematical models of human ventricular myocytes and a bidomain model of transmural conduction. The D71V Kir2.1 mutation caused significant action potential duration prolongation in subendocardial, midmyocardial, and subepicardial myocytes but did not significantly increase transmural dispersion of repolarization. Simulations of the D71V mutation at shorter cycle lengths induced stable action potential alternans in midmyocardial, but not subendocardial or subepicardial cells. The action potential alternans was manifested as an abbreviated QRS complex in the transmural ECG, the result of action potential propagation failure in the midmyocardial tissue. In addition, our simulations of D71V mutation recapitulate several key ECG features of ATS, including QT prolongation, T-wave flattening, and QRS widening. Thus our modeling approach faithfully recapitulates several features of ATS and provides a mechanistic explanation for the low frequency of torsade de pointes arrhythmia in ATS.


1998 ◽  
Vol 275 (4) ◽  
pp. H1216-H1224 ◽  
Author(s):  
Seth J. Rials ◽  
Xiaoping Xu ◽  
Ying Wu ◽  
Roger A. Marinchak ◽  
Peter R. Kowey

Recent studies indicate that regression of left ventricular hypertrophy (LVH) normalizes the in situ electrophysiological abnormalities of the left ventricle. This study was designed to determine whether regression of LVH also normalizes the abnormalities of individual membrane currents. LVH was induced in rabbits by renal artery banding. Single ventricular myocytes from rabbits with LVH at 3 mo after renal artery banding demonstrated increased cell membrane capacitance, prolonged action potential duration, decreased inward rectifier K+ current density, and increased transient outward K+ current density compared with myocytes from age-matched controls. Additional rabbits were randomized at 3 mo after banding to treatment with either vehicle or captopril for an additional 3 mo. Myocytes from LVH rabbits treated with vehicle showed persistent membrane current abnormalities. However, myocytes isolated from LVH rabbits treated with captopril had normal cell membrane capacitance, action potential duration, and membrane current densities. Captopril had no direct effect on membrane currents of either control or LVH myocytes. These data support the hypothesis that the action potential prolongation and membrane current abnormalities of LVH are reversed by regression. Normalization of membrane currents probably explains the reduced vulnerability to ventricular arrhythmia observed in this LVH model after treatment with captopril.


Sign in / Sign up

Export Citation Format

Share Document