Design of a bioprocess for metal and sulfate removal from acid mine drainage

2018 ◽  
Vol 180 ◽  
pp. 72-77 ◽  
Author(s):  
Cristian Hurtado ◽  
Pabla Viedma ◽  
Davor Cotoras
2012 ◽  
Vol 610-613 ◽  
pp. 3252-3256
Author(s):  
Mei Qin Chen ◽  
Feng Ji Wu

Acid mine drainage (AMD) has properties of extreme acidification, quantities of sulfate and elevated levels of soluble heavy metals. It was a widespread environmental problem that caused adverse effects to the qualities of ground water and surface water. In the past decades, most of investigations were focused on the heavy metals as their toxicities for human and animals. As another main constitution of AMD, sulfate ion is nontoxic, yet high concentration of sulfate ion can cause many problems such as soil acidification, metal corrosion and health problems. More attention should be paid on the sulfate ion when people focus on the AMD. In the paper, sulfate removal mechanisms include adsorption, precipitation, co-precipitation and biological reduction were analyzed and summarized. Meanwhile, the remediation technologies, especially the applications of them in China were also presented and discussed.


2018 ◽  
Vol 73 ◽  
pp. 05009
Author(s):  
Hardyanti Nurandani ◽  
Utomo Sudarno ◽  
Oktaviana Angelica ◽  
Serafina Katrin ◽  
Junaidi Junaidi

Sulphur dioxide gas is one of most contaminating gas in the air. Sulphur gas can be produced by mining activities. Sulphur gas will be harmful if bond with CO2 to form as Sulphur Dioxide. To reduce the Sulphur Dioxide gas concentration we must inhibite the sulphur gas formation from mining activities. The inhibition of sulphur gas could be done by reduce the sulphate concentration in acid mine drainage. One of important factor that influencing the reduce of sulphate is COD/SO42- ratio. The effect of COD/SO42- ratio on bacterial growth and sulfate removal process can be investigated with anaerobic batch reactor. The laundry septic tank sediments were inoculated on an anaerobic batch reactor which were contacted with artificial coal acid mine water wastes with 1000 sulfate concentrations and 2000 mg SO42- /L. In an anaerobic batch reactor there are five reactors with variations of COD / SO42-1.0, 1.5, 2.0, 4.0, and 8.0 ratios. Efficiency ratio and the best sulfate removal rate is in reactor ratio 2.0 with value efficiency of 46.58% and a reduction rate of 29.128 mg / L.day in an anaerobic batch reactor. The efficiency of the removal rate decreased when the COD / SO42->2.0 ratio decreased. The fastest pH decline was in the COD/SO42-8.0 ratio variation in the anaerobic batch reactor and. The COD / SO42-ratio can help the sulfate reduction process in the optimum value by affecting the sulfate-reducing bacterial metabolism in the balance of the acceptor and the electron donor.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Dongyang Deng ◽  
Lian-shin Lin ◽  
Andrea Nana Ofori-Boadu

This study investigated coal-mine drainage (AMD) and municipal wastewater (MWW) contaminant concentrations and conducted the combined treatment in phases I and II: phase I, evaluating effects of mixing the two based on extent of acid neutralization and metals removal; phase II: conducting anaerobic batch reactor treatment of AMD and MWW under varying COD/sulfate ratios (0.04-5.0). In phase I, acid mine drainage water quality conditions are as follows: pH 4.5, acidity 467.5 mg/L as CaCO3, alkalinity 96.0 mg/L as CaCO3, Cl- 11.8 mg/L, SO42- 1722 mg/L, TDS 2757.5 mg/L, TSS 9.8 mg/L, BOD 14.7 mg/L, Fe 138.1 mg/L, Mg 110.8 mg/L. Mn 7.5 mg/L, Al 8.1 mg/L, Na 114.2 mg/L, and Ca 233.5 mg/L. Results of the mixing experiments indicated significant removal of selected metals (Fe 85~98%, Mg 0~65%, Mn 63~89%, Al 98~99%, Na 0~30%), acidity (77~95%) from the mine water and pH was raised to above 6.3. The Phase II results suggested under the wide range of COD/sulfate ratios, COD and sulfate removal varied from 37.4%-100% and 0%-93.5% respectively. During biological treatment, alkalinity was generated which leads to pH increase to around 7.6-8.5. The results suggested feasibility of the proposed technology for co-treatment of AMD and MWW. A conceptual design of co-treatment system which is expected to remove a matrix of pollutants has been provided to utilize all the locally available water resources to achieve the optimum treatment efficiency. The technology also offers an opportunity to significantly reduce capital and operating costs compared to the existing treatment methodologies used.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6615
Author(s):  
Konstantin B. L. Borchert ◽  
Christine Steinbach ◽  
Berthold Reis ◽  
Niklas Gerlach ◽  
Philipp Zimmermann ◽  
...  

Due to the existence-threatening risk to aquatic life and entire ecosystems, the removal of oxyanions such as sulfate and phosphate from anthropogenic wastewaters, such as municipal effluents and acid mine drainage, is inevitable. Furthermore, phosphorus is an indispensable resource for worldwide plant fertilization, which cannot be replaced by any other substance. This raises phosphate to one of the most important mineral resources worldwide. Thus, efficient recovery of phosphate is essential for ecosystems and the economy. To face the harsh acidic conditions, such as for acid mine drainage, an adsorber material with a high chemical resistivity is beneficial. Poly(melamine-co-formaldehyde) (PMF) sustains these conditions whilst its very high amount of nitrogen functionalities (up to 53.7 wt.%) act as efficient adsorption sides. To increase adsorption capacities, PMF was synthesized in the form of mesoporous particles using a hard-templating approach yielding specific surface areas up to 409 m2/g. Different amounts of silica nanospheres were utilized as template and evaluated for the adsorption of sulfate and phosphate ions. The adsorption isotherms were validated by the Langmuir model. Due to their properties, the PMF particles possessed outperforming maximum adsorption capacities of 341 and 251 mg/g for phosphate and sulfate, respectively. Furthermore, selective adsorption of sulfate from mixed solutions of phosphate and sulfate was found for silica/PMF hybrid particles.


2017 ◽  
Vol 262 ◽  
pp. 582-586 ◽  
Author(s):  
Davor Cotoras ◽  
Cristian Hurtado ◽  
Pabla Viedma

Sulfate is a pollutant present in the mining waste water and acid mine drainage. High levels of sulfate can generate important environmental problems. One of the alternatives proposed for the treatment of water with high levels of sulfate is the use of sulfate-reducing microorganisms. This work describes the synergistic combination of a treatment system for the removal of metals by biosorption with the strain Bacillus sp. NRRL-B-30881 to reduce the inhibiting concentration of metals in waters, followed by a new process of sulfate removal that uses a halotolerant sulfate-reducing microbial consortium. The results show that the sulfate reducing consortium can be cultured and is able to reduce the sulfate concentration using cheaper complex organic substrates like spirulina, cellulose and industrial starch. The sulfate reducing consortium was cultured on a bioreactor with Celite R-635, as support material. Using this bioreactor it was possible to reduce the sulfate concentration in the culture medium in batch or semi-continuous operation. An acid mine drainage was pretreated by lime and treated by biosortion in order to increase the pH and reduce the heavy metals concentration. Subsequently the remaining sulfate was removed by the developed process. This integrated biological process represents a more economical alternative for the removal of metal by biosortion and the removal of sulfate using a sulfate reducing consortium.


Desalination ◽  
2018 ◽  
Vol 440 ◽  
pp. 122-134 ◽  
Author(s):  
J. Lopez ◽  
M. Reig ◽  
O. Gibert ◽  
C. Valderrama ◽  
J.L. Cortina

2016 ◽  
Vol 75 (3) ◽  
pp. 705-715 ◽  
Author(s):  
K. Ambiado ◽  
C. Bustos ◽  
A. Schwarz ◽  
R. Bórquez

The objective of this study is to evaluate the treatment of high-strength acid mine drainage (AMD) from copper mining by nanofiltration (NF) and reverse osmosis (RO) at pilot scale. The performances of two commercial spiral-wound membranes – NF99 and RO98pHt, both from Alfa Laval – were compared. The effects of pressure and feed flow on ion rejection and permeate flux were evaluated. The results showed high ion removal under optimum pressure conditions, which reached 92% for the NF99 membrane and 98% for the RO98pHt membrane. Sulfate removal reached 97% and 99% for NF99 and RO98pHt, respectively. In the case of copper, aluminum, iron and manganese, the removal percentage surpassed 95% in both membranes. Although concentration polarization limited NF performance at higher pressures, permeate fluxes observed in NF were five times greater than those obtained by RO, with only slightly lower divalent ion rejection rates, making it a promising option for the treatment of AMD.


Carbon ◽  
2014 ◽  
Vol 73 ◽  
pp. 51-60 ◽  
Author(s):  
Siqi Hong ◽  
Fred S. Cannon ◽  
Pin Hou ◽  
Timothy Byrne ◽  
Cesar Nieto-Delgado

Sign in / Sign up

Export Citation Format

Share Document