scholarly journals Influence of micellar calcium phosphate on in vitro gastric coagulation and digestion of milk proteins in infant formula model systems

2020 ◽  
Vol 107 ◽  
pp. 104717
Author(s):  
Thom Huppertz ◽  
Tim T. Lambers
2021 ◽  
Vol 117 ◽  
pp. 105008
Author(s):  
Arissara Phosanam ◽  
Jayani Chandrapala ◽  
Thom Huppertz ◽  
Benu Adhikari ◽  
Bogdan Zisu

2020 ◽  
Vol 11 (1) ◽  
pp. 358-369 ◽  
Author(s):  
Hannah E. Zenker ◽  
Glenn A. A. van Lieshout ◽  
Martine P. van Gool ◽  
Marjolijn C. E. Bragt ◽  
Kasper A. Hettinga

High levels of blocked lysine in infant formula lead to increasing average peptide length after in vitro digestion in infants.


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


2020 ◽  
Author(s):  
H Gaitantzi ◽  
C Cai ◽  
S Asawa ◽  
K Böttcher ◽  
M Ebert ◽  
...  

2015 ◽  
Vol 23 (1) ◽  
pp. 1-14
Author(s):  
Sudirman Sahid ◽  
◽  
Nor Shahida Kader Bashah ◽  
Salina Sabudin ◽  
◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 453
Author(s):  
Susana M. Chuva de Sousa Lopes ◽  
Marta S. Alexdottir ◽  
Gudrun Valdimarsdottir

Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.


Author(s):  
Ting L. Luo ◽  
Michael E. Vanek ◽  
Carlos Gonzalez‐Cabezas ◽  
Carl F. Marrs ◽  
Betsy Foxman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasaman Shamshirgaran ◽  
Anna Jonebring ◽  
Anna Svensson ◽  
Isabelle Leefa ◽  
Mohammad Bohlooly-Y ◽  
...  

AbstractRecent advances in induced pluripotent stem cells (iPSCs), genome editing technologies and 3D organoid model systems highlight opportunities to develop new in vitro human disease models to serve drug discovery programs. An ideal disease model would accurately recapitulate the relevant disease phenotype and provide a scalable platform for drug and genetic screening studies. Kidney organoids offer a high cellular complexity that may provide greater insights than conventional single-cell type cell culture models. However, genetic manipulation of the kidney organoids requires prior generation of genetically modified clonal lines, which is a time and labor consuming procedure. Here, we present a methodology for direct differentiation of the CRISPR-targeted cell pools, using a doxycycline-inducible Cas9 expressing hiPSC line for high efficiency editing to eliminate the laborious clonal line generation steps. We demonstrate the versatile use of genetically engineered kidney organoids by targeting the autosomal dominant polycystic kidney disease (ADPKD) genes: PKD1 and PKD2. Direct differentiation of the respective knockout pool populations into kidney organoids resulted in the formation of cyst-like structures in the tubular compartment. Our findings demonstrated that we can achieve > 80% editing efficiency in the iPSC pool population which resulted in a reliable 3D organoid model of ADPKD. The described methodology may provide a platform for rapid target validation in the context of disease modeling.


Sign in / Sign up

Export Citation Format

Share Document