"Effect of walnut oil on the fatty acid content of probiotic kefir produced either with kefir grains or kefir starter cultures"

2021 ◽  
pp. 105290
Author(s):  
Katarzyna Turek ◽  
Monika Wszołek
1992 ◽  
Vol 117 (3) ◽  
pp. 518-522 ◽  
Author(s):  
L. Carl Greve ◽  
Gale McGranahan ◽  
Janine Hasey ◽  
Ronald Snyder ◽  
Kathy Kelly ◽  
...  

The variation in polyunsaturated fatty acid content of walnut (Juglans regia L.) oils was determined by analysis of samples isolated from specimens growing in four germplasm collections [California (55 cultivars), Washington (64 seedlings), China (12 cultivars), and France (20 cultivars)]. In addition, the impact of within-state geographic differences on oil composition was examined by comparing samples from three California cultivars (`Ashley', `Hartley', and `Franquette') grown in three locations. Local environmental effects on oil composition of `Chico' were also examined by comparing 1) samples collected from shaded and sun-exposed locations of the same trees and 2) samples collected from trees subjected to three irrigation regimes. Polyunsaturated fatty acid content, as a percentage of total fatty acids, ranged from 47.2% in nuts from PI 142323 from France to 81.0% in `Ashley' from California. However, our data indicate that environment, genotype, nut maturity, and their interactions all contribute significantly to variation in the degree of unsaturation of walnut oil.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 35
Author(s):  
Roua Bou Orm ◽  
Morgane Citeau ◽  
Audrey Comitis ◽  
Raphaëlle Savoire ◽  
Christelle Harscoat-Schiavo ◽  
...  

Liquid–liquid extraction of vegetable oil with ethanol predominantly removes the components having the greatest affinity for ethanol, such as free fatty acids responsible for the acidity of oil, but also some contaminants such as phthalates. The aim of this work is to study the effect of several operating parameters on the deacidification process: the initial free fatty acid content in oil (3.1, 5.8, 7.6 and 11.7% OA eq.), the ethanol-water content in solvent (70.0/30.0, 80.0/20.0, 87.8/12.2 and 95.6/4.4 g/g), and the oil/solvent ratio (0.50, 0.75 and 1.00 g/g). The economic assessment of the deacidification based on the costs of distilling solvent and neutral oil loss showed that the use of solvents containing 82 to 90 wt.% of ethanol enables to achieve a trade-off between efficiency of the extraction of free fatty acid and the neutral oil losses. A three-stage crosscurrent extraction using a solvent at 88.6 wt.% of ethanol (global solvent/oil ratio: 8.0 g/g) reduced the free fatty acid content from 5.8% OA eq. (in crude walnut oil) to 0.3–0.4% OA eq. with a loss of 4.0% of neutral oil mass. Regarding the extraction of phthalates, our results showed that the lower the water content in the hydroethanolic solvent, the more efficient the extraction of butyl benzyl phthalate (BBP). Moreover, extraction with ethanol has successfully reduced the BBP content below the current regulatory limit.


Author(s):  
C. S. Bricker ◽  
S. R. Barnum ◽  
B. Huang ◽  
J. G. Jaworskl

Cyanobacteria are Gram negative prokaryotes that are capable of oxygenic photosynthesis. Although there are many similarities between eukaryotes and cyanobacteria in electron transfer and phosphorylation during photosynthesis, there are two features of the photosynthetic apparatus in cyanobacteria which distinguishes them from plants. Cyanobacteria contain phycobiliproteins organized in phycobilisomes on the surface of photosynthetic membrane. Another difference is in the organization of the photosynthetic membranes. Instead of stacked thylakolds within a chloroplast envelope membrane, as seen In eukaryotes, IntracytopIasmlc membranes generally are arranged in three to six concentric layers. Environmental factors such as temperature, nutrition and light fluency can significantly affect the physiology and morphology of cells. The effect of light Intensity shifts on the ultrastructure of Internal membrane in Anabaena variabilis grown under controlled environmental conditions was examined. Since a major constituent of cyanobacterial thylakolds are lipids, the fatty acid content also was measured and correlated with uItrastructural changes. The regulation of fatty acid synthesis in cyanobacteria ultimately can be studied if the fatty acid content can be manipulated.


2016 ◽  
Vol 2 (1) ◽  
pp. 37-42 ◽  
Author(s):  
J.M. Pino Moreno ◽  
A. Ganguly

In the present paper we have determined the fatty acid content of some edible insects of Mexico. A comparative analysis of the insect species studied in this research showed that caproic acid was present in a minimal proportion which ranged between 0.01 for Periplaneta americana (nymphs) and 0.06 (g/100 g, dry basis) for Euschistus strenuus. The highest proportion of caprilic acid (0.09) was found in Tenebrio molitor (adults). Atta sp. had the highest amount of capric acid (0.26). Polistes sp. was found to be rich in lauric acid (0.77) and for myristic acid it had the highest content (5.64). Dactylopius sp. and E. strenuus were rich in palmitic acid (14.89). Euschistus taxcoensis had the highest quantity of palmitoleic acid (12.06). Llaveia axin exhibited the highest quantity of stearic acid (22.75). Polistes sp. was found to be rich in oleic acid (38.28). The highest quantity of linoleic acid was observed in T. molitor (larvae) (10.89), and in L. axin the highest content of linolenic acid (7.82) was obtained. A comparison between the species under the present investigation revealed that, in general, the insects are poor in caproic, caprilic, capric, lauric, myristic, palmitoleic and linolenic acids, because the quantities were either minimal or could not be detected at all. They had moderate quantities of stearic, palmitic and linoleic acids and had high quantities of oleic acid. Finally it was concluded that although a particular insect species is unable to fulfil the total fatty acid need for a human, if consumed in combination they could definitely be able to supply a good amount of this highly valued nutrient.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 105
Author(s):  
Amirah Yuslan ◽  
Sharifah Najuwa ◽  
Atsushi Hagiwara ◽  
Mazlan A. Ghaffar ◽  
Hidayu Suhaimi ◽  
...  

Salinity is a known factor in shaping population dynamics and community structure through direct and indirect effects on aquatic ecosystems. Salinity changes further influence food webs through competition and predation. The responses of Moina macrocopa (Cladocera) collected from Setiu Wetland lagoon (Terengganu) was evaluated through manipulative laboratory experiments to understand the ability of M. macrocopa to tolerate high salinity stress. Specifically, the fatty acid composition, growth, survival, and reproduction of this cladocerans species was examined. Sodium chloride (NaCl) as used in the treatments water with the concentration 0, 4, 6, 8, 12, and 15 salinity. Fatty acid levels were determined using Gas Chromatography and Mass Spectrophotometry (GC-MS). The results indicated that optimal conditions produced the highest fatty acid content, especially the polyunsaturated fatty acid content, such as EPA (eicosapentaenoic acid), ALA (alpha-linoleic acid), ARA (arachidonic acid), and DHA (docosahexaenoic acid). Furthermore, M. macrocopa survival was best at salinity 0, with a percentage of 98%, whereas the opposite occurred at salinity 15, with approximately 20% of viable animals surviving. Besides, M. macrocopa also showed the highest reproduction rate at salinity 0 (e.g., average initial age of reproduction, 4.33 ± 0.58 days) compared with other salinities level. Interestingly, the difference in growth at different salinities was not evident, an unusual finding when considering adverse effects such as osmoregulation pressure on the organism. Based on the results, we conclude that M. macrocopa can only tolerate salinity below salinity 8 and cannot withstand stressful environmental conditions associated with salinities above 8.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roel M. Maas ◽  
Yale Deng ◽  
Yueming Dersjant-Li ◽  
Jules Petit ◽  
Marc C. J. Verdegem ◽  
...  

AbstractSustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.


Sign in / Sign up

Export Citation Format

Share Document