scholarly journals Investigation of Optimal Network Architecture for Asparagus Spear Detection in Robotic Harvesting

2019 ◽  
Vol 52 (30) ◽  
pp. 283-287 ◽  
Author(s):  
M. Peebles ◽  
S.H. Lim ◽  
M. Duke ◽  
B. McGuinness
Author(s):  
Víctor de la Fuente Castillo ◽  
Alberto Díaz-Álvarez ◽  
Miguel-Ángel Manso-Callejo ◽  
Francisco Serradilla García

Photogrammetry involves aerial photography of the earth’s surface and subsequently processing the images to provide a more accurate depiction of the area (Orthophotography). It’s used by the Spanish Instituto Geográfico Nacional to update road cartography but requires a significant amount of manual labor due to the need to perform visual inspection of all tiled images. Deep Learning techniques (artificial neural networks with more than one hidden layer) can perform road detection but it is still unclear how to find the optimal network architecture. Our system applies grammar guided genetic programming to the search of deep neural network architectures. In this kind of evolutive algorithm all the population individuals (here candidate network architectures) are constrained to rules specified by a grammar that defines valid and useful structural patterns to guide the search process. Grammar used includes well-known complex structures (e.g. Inception-like modules) combined with a custom designed mutation operator (dynamically links the mutation probability to structural diversity). Pilot results show that the system is able to design models for road detection that obtain test accuracies similar to that reached by state of the art models when evaluated over a dataset from the Spanish National Aerial Orthophotography Plan.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jujie Wang

It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China’s wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.


2020 ◽  
Vol 34 (04) ◽  
pp. 4924-4931
Author(s):  
Yingru Liu ◽  
Xuewen Yang ◽  
Dongliang Xie ◽  
Xin Wang ◽  
Li Shen ◽  
...  

Multi-task learning (MTL) is a common paradigm that seeks to improve the generalization performance of task learning by training related tasks simultaneously. However, it is still a challenging problem to search the flexible and accurate architecture that can be shared among multiple tasks. In this paper, we propose a novel deep learning model called Task Adaptive Activation Network (TAAN) that can automatically learn the optimal network architecture for MTL. The main principle of TAAN is to derive flexible activation functions for different tasks from the data with other parameters of the network fully shared. We further propose two functional regularization methods that improve the MTL performance of TAAN. The improved performance of both TAAN and the regularization methods is demonstrated by comprehensive experiments.


2020 ◽  
Vol 10 (11) ◽  
pp. 3953 ◽  
Author(s):  
Víctor de la Fuente Castillo ◽  
Alberto Díaz-Álvarez ◽  
Miguel-Ángel Manso-Callejo ◽  
Francisco Serradilla García

Photogrammetry involves aerial photography of the Earth’s surface and subsequently processing the images to provide a more accurate depiction of the area (Orthophotography). It is used by the Spanish Instituto Geográfico Nacional to update road cartography but requires a significant amount of manual labor due to the need to perform visual inspection of all tiled images. Deep learning techniques (artificial neural networks with more than one hidden layer) can perform road detection but it is still unclear how to find the optimal network architecture. Our main goal is the automatic design of deep neural network architectures with grammar-guided genetic programming. In this kind of evolutive algorithm, all the population individuals (here candidate network architectures) are constrained to rules specified by a grammar that defines valid and useful structural patterns to guide the search process. Grammar used includes well-known complex structures (e.g., Inception-like modules) combined with a custom designed mutation operator (dynamically links the mutation probability to structural diversity). Pilot results show that the system is able to design models for road detection that obtain test accuracies similar to that reached by state-of-the-art models when evaluated over a dataset from the Spanish National Aerial Orthophotography Plan.


Author(s):  
Ali Mohd Ali ◽  
Mahmoud Dhimish ◽  
Malek M. Alsmadi ◽  
Peter Mather

AbstractTo determine the optimal network architecture between the Basic Service Set, the Extended Service Set and the Independent Basic Service Set, this study established a new algorithm to assess Voice over Internet Protocol (VoIP) metrics of different IEEE 802.11 technologies. An important coefficient for each VoIP metric parameter has been invented to rank the different IEEE 802.11 standards and to identify the most efficient one for the VoIP application. The best overall network performance that offers good voice quality is ensured by determining the optimum network architecture and technology. Moreover, for the VoIP efficiency parameters, it meets the acceptance threshold values. This algorithm was implemented in different sizes of rooms ranging from 1 × 1 m to 10 × 10 m, and the number of nodes varied from 1 to 65. End to end delay, jitter, throughput and packet loss were the quality of service parameters used.


2020 ◽  
Vol 9 (6) ◽  
pp. 2588-2594
Author(s):  
Branislav Mladenov ◽  
Georgi Iliev

Distributed denial of service (DDoS) attacks are a major threat to all internet services. The main goal is to disrupt normal traffic and overwhelms the target. Software-defined networking (SDN) is a new type of network architecture where control and data plane are separated. A successful attack may block the SDN controller which may stop processing the new request and will lead to a total disruption of the whole network. The main goal of this paper is to find the optimal network topology and size which can handle Distributed denial of service attack without management channel bandwidth exhaustion or run out of SDN controller CPU and memory. Through simulations, it is shown that mesh topologies with more connections between switches are more resistant to DDoS attacks than liner type network topologies. 


2017 ◽  
Vol 13 (12) ◽  
pp. 18 ◽  
Author(s):  
Changtong Song

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: DE; mso-bidi-language: AR-SA;">To explore big data processing and its application in wireless sensor network (WSN), this paper studies structural construction of the WSN based on big data processing, and numerically simulates SVC4WSN and MDF4LWSN architectures. Moreover, the relationship between the optimal network layer and node communication radius was verified at different node densities. The results indicate that the proposed model achieved better lifecycle and loading balancing effect than the other network.</span>


2016 ◽  
Vol 12 (2) ◽  
Author(s):  
Joanna Szaleniec ◽  
Maciej Szaleniec ◽  
Paweł Stręk

AbstractIn the artificial neural network field, no universal algorithm of modeling ensures obtaining the best possible model for a given task. Researchers frequently regard artificial neural networks with suspicion caused by the lack of repeatability of single experiments. We propose a systematic approach that may increase the probability of finding the optimal network architecture. In the experiments, the average effectiveness in groups of networks rather than single networks should be compared. Such an approach facilitates the analysis of the results caused by changes in the network parameters, while the influence of chance effects becomes negligible. As an example of this protocol, we present optimization of a neural network applied for prediction of persistent facial pain in patients operated for chronic rhinosinusitis. In the stepwise approach, the percentage of correct predictions was gradually increased from 54% to 75% for the external validation set.


2021 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Zhen Zhang ◽  
Yang Zhang ◽  
Shanghao Liu ◽  
Wenbo Chen

Due to the superiority of convolutional neural networks, many deep learning methods have been used in image classification. The enormous difference between natural images and remote sensing images makes it difficult to directly utilize or modify existing CNN models for remote sensing scene classification tasks. In this article, a new paradigm is proposed that can automatically design a suitable CNN architecture for scene classification. A more efficient search framework, RS-DARTS, is adopted to find the optimal network architecture. This framework has two phases. In the search phase, some new strategies are presented, making the calculation process smoother, and better distinguishing the optimal and other operations. In addition, we added noise to suppress skip connections in order to close the gap between trained and validation processing and ensure classification accuracy. Moreover, a small part of the neural network is sampled to reduce the redundancy in exploring the network space and speed up the search processing. In the evaluation phase, the optimal cell architecture is stacked to construct the final network. Extensive experiments demonstrated the validity of the search strategy and the impressive classification performance of RS-DARTS on four public benchmark datasets. The proposed method showed more effectiveness than the manually designed CNN model and other methods of neural architecture search. Especially, in terms of search cost, RS-DARTS consumed less time than other NAS methods.


Sign in / Sign up

Export Citation Format

Share Document