Combination of high-pressure treatment, mild heating and holding time effects as a means of improving the barrier properties of gelatin-based packaging films using response surface modeling

2015 ◽  
Vol 30 ◽  
pp. 15-23 ◽  
Author(s):  
Stefano Molinaro ◽  
Malco Cruz-Romero ◽  
Alessandro Sensidoni ◽  
Michael Morris ◽  
Corrado Lagazio ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


2004 ◽  
Vol 61 (4) ◽  
pp. 545-549 ◽  
Author(s):  
Jaroslav Dobiáš ◽  
Michal Voldřich ◽  
Miroslav Marek ◽  
Kamila Chudáčková

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1011 ◽  
Author(s):  
Hai Chi ◽  
Jing Xue ◽  
Cheng Zhang ◽  
Haiyan Chen ◽  
Lin Li ◽  
...  

Effects of high pressure treatment (0, 200 and 400 MPa) on water vapour barrier, microstructure, thermal, and mechanical properties of poly (lactic acid) (PLA)/Ag nanocomposite films were investigated. The migration behavior of nano-Ag from the nanocomposite films in the presence of 50% (v/v) ethanol as a food simulant was also studied. The water vapour barrier properties increased as pressure was applied to film-forming solutions. High pressure treatment enhanced the mutual effect between PLA and nanoparticles, leading to a more compact network structure in PLA/Ag nanocomposite films. Furthermore, PLA/Ag nanocomposite films treated by high pressure were significantly affected by microstructure, thermal, and mechanical properties when, compared with untreated samples. High pressure treatment at 200 to 400 MPa significantly (p < 0.05) reduced the migration of nano-Ag from the films. Overall, high pressure treatment on film-forming solutions showed potential in improving the functional properties of nanocomposite films, especially in relation to water vapour barrier properties.


2002 ◽  
Vol 22 (5) ◽  
pp. 601-615 ◽  
Author(s):  
Souhail Besbes ◽  
Christophe Blecker ◽  
Hamadi Attia ◽  
Carine Massaux ◽  
Claude Deroanne

2021 ◽  
Vol 16 (1) ◽  
pp. 92-101
Author(s):  
Guanghui Xia ◽  
Xinhua Li ◽  
Zhen Zhang ◽  
Yuhang Jiang

Abstract Polygonatum odoratum (Mill.) Druce (POD) is a natural plant widely used for food and medicine, thanks to its rich content of a strong antioxidant agent called homoisoflavones. However, food processing methods could affect the stability of POD flavones, resulting in changes to their antioxidant activity. This study attempts to evaluate the antioxidant activity of POD flavones subject to different processing methods and determines which method could preserve the antioxidant activity of POD flavones. Therefore, flavones were extracted from POD samples, which had been treated separately with one of the four processing methods: extrusion, baking, high-pressure treatment, and yeast fermentation. After that, the antioxidant activity of the flavones was subject to in vivo tests in zebrafish embryos. The results show that yeast fermentation had the least disruption to the antioxidant activity of POD flavones, making it the most suitable food processing method for POD. By contrast, extrusion and high-pressure treatment both slightly weakened the antioxidant activity of the flavones and should be avoided in food processing. The research results provide a reference for the development and utilization of POD and the protection of its biological activity.


Sign in / Sign up

Export Citation Format

Share Document