scholarly journals Characterization of Moringa oleifera leaf and seed protein extract functionality in emulsion model system

Author(s):  
Ya'’ara Cattan ◽  
Devashree Patil ◽  
Yiftach Vaknin ◽  
Giora Rytwo ◽  
Catriona Lakemond ◽  
...  
Author(s):  
Victoria Teniola Adeleke ◽  
Adebayo A Adeniyi ◽  
David Lokhat

Availability of clean water for various activities is a global challenge. Moringa oleifera (MO) seed protein extract has been identified as a natural coagulant for wastewater treatment. The mechanistic understanding...


2012 ◽  
Vol 65 (8) ◽  
pp. 1435-1440 ◽  
Author(s):  
Thiago L. Marques ◽  
Vanessa N. Alves ◽  
Luciana M. Coelho ◽  
Nívia M. M. Coelho

Metal contaminants are generally removed from effluents by chemical and physical processes which are often associated with disadvantages such as the use of toxic reagents, generation of toxic waste and high costs. Hence, new techniques have been developed, among them the study of natural adsorbents, for instance, the use of Moringa oleifera seeds. The potential of M. oleifera seeds for nickel removal in aqueous systems was investigated. The seeds utilized were obtained from plants grown in Uberlândia/Brazil. After being dried and pulverized, the seeds were treated with 0.1 mol/L NaOH. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analyses were used for the characterization of the material. Using the optimized methodology (50 mL of 4.0 mg/L Ni(II), pH range of 4.0–6.0, agitation time of 5 min and adsorption mass of 2.0 g) more than 90% of Ni(II) could be removed from water samples. The sorption data were fitted satisfactorily by the Langmuir adsorption model. Evaluation applying the Langmuir equation gave the monolayer sorption capacity as 29.6 mg/g. The results indicate that this material could be employed in the extraction of nickel, considering its ease of use, low cost and environmental viability, which make it highly attractive for application in developing countries.


Inflammation ◽  
2021 ◽  
Author(s):  
Boyun Kim ◽  
Victor Guaregua ◽  
Xuebo Chen ◽  
Chad Zhao ◽  
Wanyi Yeow ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3078
Author(s):  
Anissa Souidi ◽  
Krzysztof Jagla

The Drosophila heart, also referred to as the dorsal vessel, pumps the insect blood, the hemolymph. The bilateral heart primordia develop from the most dorsally located mesodermal cells, migrate coordinately, and fuse to form the cardiac tube. Though much simpler, the fruit fly heart displays several developmental and functional similarities to the vertebrate heart and, as we discuss here, represents an attractive model system for dissecting mechanisms of cardiac aging and heart failure and identifying genes causing congenital heart diseases. Fast imaging technologies allow for the characterization of heartbeat parameters in the adult fly and there is growing evidence that cardiac dysfunction in human diseases could be reproduced and analyzed in Drosophila, as discussed here for heart defects associated with the myotonic dystrophy type 1. Overall, the power of genetics and unsuspected conservation of genes and pathways puts Drosophila at the heart of fundamental and applied cardiac research.


Author(s):  
Nurrahmi Dewi Fajarningsih ◽  
Naomi Intaqta ◽  
Danar Praseptiangga ◽  
Choiroel Anam

Extraction and partial characterization of lectin from Indonesian Padina australis and Padina minor had been carried out. The crude extract of the P. australis and P. minor were examined for hemagglutination activity (HA) using native and trypsin-treated of rabbit and human A, B, O type erythrocytes. Both extracts agglutinated all of the trypsin-treated erythrocytes tested in the HA assay. Strong HA was detected in the crude extract of P. minor with trypsin-treated of human type A and O erythrocytes. However, the sugar-binding specificity study through the quantitative hemagglutination inhibition (HI) assay showed that P. minor extract could not specifically recognize the glycans tested. Apparently, the HA of the P. minor was more due to its co-extracted polyphenols content than its lectin content. On the other hand, the HI assay showed that asialo transferrin human (aTf) and asialo porcine thyroglobulin (aPTG) were the most powerful in inhibiting the HA of P. australis. Those indicated that P. australis protein extract was able to specifically recognized aTf and aPTG. The stability of P. australis and P. minor HA over various temperatures, pH ranges, and divalent cations studies showed that the P. minor HA was stable on a wide range of pH and temperature; not affected by the presence of EDTA, but decreased by Ca2+ and Mg2+ additions showed that P. minor protein extract  was not a metallic protein. The HA of P. australis decreased at 60 oC and was inactivated at 90 oC; increased at strong acidic (pH 3 & 4) and strong basic (pH 9 & 10) and dependent by the presence of either EDTA or Ca2+ and Mg2+ divalent cation.


1996 ◽  
Vol 46 (8) ◽  
pp. 1339-1356 ◽  
Author(s):  
H. Zerbe ◽  
H.-J. Schuberth ◽  
M. Hoedemaker ◽  
E. Grunert ◽  
W. Leibold

Sign in / Sign up

Export Citation Format

Share Document