Kraft lignin/cubic boron nitride hybrid materials as functional components for abrasive tools

2019 ◽  
Vol 122 ◽  
pp. 88-94 ◽  
Author(s):  
Łukasz Klapiszewski ◽  
Artur Jamrozik ◽  
Beata Strzemiecka ◽  
Paulina Jakubowska ◽  
Tadeusz J. Szalaty ◽  
...  
2021 ◽  
Vol 316 ◽  
pp. 521-526
Author(s):  
Vladimir A. Nosenko ◽  
Alexander V. Fetisov ◽  
Semen P. Kuznetsov

The article summarizes the results of the of the titanium alloy surface morphology and chemical composition study after grinding with a wheel of cubic boron nitride on a ceramic bond. The titanium alloy was treated using the method of cut-in grinding in the finishing mode using a synthetic water-soluble lubricant-cooling liquid that does not contain mineral oil. The research was carried out using the FEI Versa 3D LoVac electron microscope. Digital photos of the titanium alloy surface at different magnifications are given. Individual objects’ morphology allows us to identify them as wear products of abrasive tools. The chemical composition of the selected objects was studied by local x-ray spectral analysis. CBN crystals are partially or completely pressed into the treated surface and covered with a layer of the treated material. On the surface of CBN crystals, there are chemical elements that are part of the abrasive tool bond.


2020 ◽  
Vol 57 (6) ◽  
pp. 53-64
Author(s):  
N.M. Huliieva ◽  
D.O. Somov ◽  
V.V. Pasternak ◽  
L.M. Samchuk ◽  
T.I. Chetverzhuk

AbstractThe issue of grinding saponite–titanium composites has not been considered in the machine building industry yet. The reason is that the chips are stuck on the working surfaces of abrasive tools made of silicon carbide and electrocorundum. This is due to the high adhesive activity at operating cutting temperatures between the composite and traditional abrasives.The article aims at studying the grinding of saponite–titanium composites using abrasive tools in various cutting modes based on parametric and non-parametric statistical methods.To solve this problem, high porous wheels (HPW) made of cubic boron nitride CBN30 with 100 % concentration on a bond V (K27), a pore-forming KF40, varied grains: B76, B126, B151 (ISO 6106:2013) – and hardness: M and O (ISO 525:2013) were used to grind saponite–titanium composites. Additionally, the Norton wheels from green silicon carbide with a normal porosity 39C (46; 60) K8 VK and with different grain size were tested. Norton wheels provide reduction of roughness height by 1.4–1.5 times in comparison with boron nitride HPW. These are recommended for the finishing grinding stage and HPW CBN30 – the preliminary to reduce the thermal effects on composites. By processing stability, the Norton wheels with grain 46 rank first, and among boron nitride HPW – CBN30 B76 100 OV K27–KF40.


Author(s):  
D. L. Medlin ◽  
T. A. Friedmann ◽  
P. B. Mirkarimi ◽  
M. J. Mills ◽  
K. F. McCarty

The allotropes of boron nitride include two sp2-bonded phases with hexagonal and rhombohedral structures (hBN and rBN) and two sp3-bonded phases with cubic (zincblende) and hexagonal (wurtzitic) structures (cBN and wBN) (Fig. 1). Although cBN is synthesized in bulk form by conversion of hBN at high temperatures and pressures, low-pressure synthesis of cBN as a thin film is more difficult and succeeds only when the growing film is simultaneously irradiated with a high flux of ions. Only sp2-bonded material, which generally has a disordered, turbostratic microstructure (tBN), will form in the absence of ion-irradiation. The mechanistic role of the irradiation is not well understood, but recent work suggests that ion-induced compressive film stress may induce the transformation to cBN.Typically, BN films are deposited at temperatures less than 1000°C, a regime for which the structure of the sp2-bonded precursor material dictates the phase and microstructure of the material that forms from conventional (bulk) high pressure treatment.


MRS Advances ◽  
2017 ◽  
Vol 2 (29) ◽  
pp. 1545-1550 ◽  
Author(s):  
Nicholas L. McDougall ◽  
Jim G. Partridge ◽  
Desmond W. M. Lau ◽  
Philipp Reineck ◽  
Brant C. Gibson ◽  
...  

ABSTRACTCubic boron nitride (cBN) is a synthetic wide band gap material that has attracted attention due to its high thermal conductivity, optical transparency and optical emission. In this work, defects in cBN have been investigated using experimental and theoretical X-ray absorption near edge structure (XANES). Vacancy and O substitutional defects were considered, with O substituted at the N site (ON) to be the most energetically favorable. All defects produce unique signatures in either the B or N K-edges and can thus be identified using XANES. The calculations coupled with electron-irradiation / annealing experiments strongly suggest that ON is the dominant defect in irradiated cBN and remains after annealing. This defect is a likely source of optical emission in cBN.


Sign in / Sign up

Export Citation Format

Share Document