Degradation of Tremella fuciformis polysaccharide by a combined ultrasound and hydrogen peroxide treatment: Process parameters, structural characteristics, and antioxidant activities

2020 ◽  
Vol 160 ◽  
pp. 979-990
Author(s):  
Mo Li ◽  
Fengming Ma ◽  
Rui Li ◽  
Guangyu Ren ◽  
Danli Yan ◽  
...  
2020 ◽  
Vol 23 (3) ◽  
pp. 284-290
Author(s):  
Mila Safitri Rizfa ◽  
Ervia Yudiati ◽  
Diah Permata Wijayanti

The relationship between molecular structure and bioactivity was evaluated for sodium alginates obtained under different degradation treatment (raw alginates, heat-treated, and chemical-treated) from Sargassum sp. This study was conducted to identify the antioxidant activities of the degraded sodium alginate from Sargassum sp. compared to raw extract. Raw alginate as the control treatment was dried overnight at 60 °C, while heat-treated was heated raw alginate at 140oC in a laboratory oven (4.5 hours). Two chemical-treated were applied. Raw alginate added hydrogen peroxide and raw alginat with hydrogen peroxide plus ascorbic acid. This treatments were replicated three times. All the parameters were evaluated spectrophotometrically. The spectroscopy results from the degradation methods showed a new absorbance spectra pattern. The FT-IR spectrum revealed that treatment affects the structure of the alginates. Heat treated and chemical treated sodium alginates showed non significantly different on DPPH radical scavenging activity. Meanwhile, the combination of alginate and hydrogen peroxide treatment was at the lowest scavenging ability. Therefore, alginate oligosaccharides (AOS) produced by heating or adding chemical reagents could be considered as a stronger antioxidant than raw alginate, which may be applied in the industry and biomedical


Odontology ◽  
2021 ◽  
Author(s):  
Sarita Giri ◽  
Ayuko Takada ◽  
Durga Paudel ◽  
Koki Yoshida ◽  
Masae Furukawa ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 608
Author(s):  
Csilla Bartos ◽  
Patrícia Varga ◽  
Piroska Szabó-Révész ◽  
Rita Ambrus

The absorption of non-steroidal anti-inflammatory drugs (NSAIDs) through the nasal epithelium offers an innovative opportunity in the field of pain therapy. Thanks to the bonding of chitosan to the nasal mucosa and its permeability-enhancing effect, it is an excellent choice to formulate microspheres for the increase of drug bioavailability. The aim of our work includes the preparation of spray-dried cross-linked and non-cross-linked chitosan-based drug delivery systems for intranasal application, the optimization of spray-drying process parameters (inlet air temperature, pump rate), and the composition of samples. Cross-linked products were prepared by using different amounts of sodium tripolyphosphate. On top of these, the micrometric properties, the structural characteristics, the in vitro drug release, and the in vitro permeability of the products were studied. Spray-drying resulted in micronized chitosan particles (2–4 μm) regardless of the process parameters. The meloxicam (MEL)-containing microspheres showed nearly spherical habit, while MEL was present in a molecularly dispersed state. The highest dissolved (>90%) and permeated (~45 µg/cm2) MEL amount was detected from the non-cross-linked sample. Our results indicate that spray-dried MEL-containing chitosan microparticles may be recommended for the development of a novel drug delivery system to decrease acute pain or enhance analgesia by intranasal application.


2020 ◽  
pp. 1-10
Author(s):  
R. Sathish Kumar ◽  
Nivedhitha Muralidharan ◽  
Ravishankar Sathyamurthy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuemei Ma ◽  
Jiayi Yu ◽  
Jing Jing ◽  
Qian Zhao ◽  
Liyong Ren ◽  
...  

AbstractPectin is a kind of natural and complex carbohydrates which is extensively used in food, chemical, cosmetic, and pharmaceutical industries. Fresh sunflower (Helianthus annuus L.) heads were utilized as a novel source of pectin extracted by ammonium oxalate. The conditions of the extraction process were optimized implementing the response surface methodology. Under optimal extraction parameters (extraction time 1.34 h, liquid–solid ratio 15:1 mL/g, ammonium oxalate concentration 0.76% (w/v)), the maximum experimental yield was 7.36%. The effect of spray-drying and freeze-drying on the physiochemical properties, structural characteristics, and antioxidant activities was investigated by FT-IR spectroscopy, high performance size exclusion chromatography, and X-ray diffraction. The results showed freeze-drying lead to decrease in galacturonic acid (GalA) content (76.2%), molecular weight (Mw 316 kDa), and crystallinity. The antioxidant activities of pectin were investigated utilizing the in-vitro DPPH and ABTS radical-scavenging systems. This study provided a novel and efficient extraction method of sunflower pectin, and confirmed that different drying processes had an effect on the structure and properties of pectin.


2018 ◽  
Vol 166 (2) ◽  
pp. 183-187 ◽  
Author(s):  
P. V. Kochubei ◽  
G. V. Kopylova ◽  
D. V. Shchepkin ◽  
S. Yu. Bershitskii

Sign in / Sign up

Export Citation Format

Share Document